79 research outputs found

    Pharmacogenomic Biomarkers in Docetaxel Treatment of Prostate Cancer: From Discovery to Implementation

    Get PDF
    Prostate cancer is the fifth leading cause of male cancer death worldwide. Although docetaxel chemotherapy has been used for more than fifteen years to treat metastatic castration resistant prostate cancer, the high inter-individual variability of treatment efficacy and toxicity is still not well understood. Since prostate cancer has a high heritability, inherited biomarkers of the genomic signature may be appropriate tools to guide treatment. In this review, we provide an extensive overview and discuss the current state of the art of pharmacogenomic biomarkers modulating docetaxel treatment of prostate cancer. This includes (1) research studies with a focus on germline genomic biomarkers, (2) clinical trials including a range of genetic signatures, and (3) their implementation in treatment guidelines. Based on this work, we suggest that one of the most promising approaches to improve clinical predictive capacity of pharmacogenomic biomarkers in docetaxel treatment of prostate cancer is the use of compound, multigene pharmacogenomic panels defined by specific clinical outcome measures. In conclusion, we discuss the challenges of integrating prostate cancer pharmacogenomic biomarkers into the clinic and the strategies that can be employed to allow a more comprehensive, evidence-based approach to facilitate their clinical integration. Expanding the integration of pharmacogenetic markers in prostate cancer treatment procedures will enhance precision medicine and ultimately improve patient outcomes

    Phosphorylation of NFATC1 at PIM1 target sites is essential for its ability to promote prostate cancer cell migration and invasion

    Get PDF
    Background Progression of prostate cancer from benign local tumors to metastatic carcinomas is a multistep process. Here we have investigated the signaling pathways that support migration and invasion of prostate cancer cells, focusing on the role of the NFATC1 transcription factor and its post-translational modifications. We have previously identified NFATC1 as a substrate for the PIM1 kinase and shown that PIM1-dependent phosphorylation increases NFATC1 activity without affecting its subcellular localization. Both PIM kinases and NFATC1 have been reported to promote cancer cell migration, invasion and angiogenesis, but it has remained unclear whether the effects of NFATC1 are phosphorylation-dependent and which downstream targets are involved. Methods We used mass spectrometry to identify PIM1 phosphorylation target sites in NFATC1, and analysed their functional roles in three prostate cancer cell lines by comparing phosphodeficient mutants to wild-type NFATC1. We used luciferase assays to determine effects of phosphorylation on NFAT-dependent transcriptional activity, and migration and invasion assays to evaluate effects on cell motility. We also performed a microarray analysis to identify novel PIM1/NFATC1 targets, and validated one of them with both cellular expression analyses and in silico in clinical prostate cancer data sets. Results Here we have identified ten PIM1 target sites in NFATC1 and found that prevention of their phosphorylation significantly decreases the transcriptional activity as well as the pro-migratory and pro-invasive effects of NFATC1 in prostate cancer cells. We observed that also PIM2 and PIM3 can phosphorylate NFATC1, and identified several novel putative PIM1/NFATC1 target genes. These include the ITGA5 integrin, which is differentially expressed in the presence of wild-type versus phosphorylation-deficient NFATC1, and which is coexpressed with PIM1 and NFATC1 in clinical prostate cancer specimens. Conclusions Based on our data, phosphorylation of PIM1 target sites stimulates NFATC1 activity and enhances its ability to promote prostate cancer cell migration and invasion. Therefore, inhibition of the interplay between PIM kinases and NFATC1 may have therapeutic implications for patients with metastatic forms of cancer.Peer reviewe

    Morphology and histology of silent and symptom-causing atherosclerotic carotid plaques - Rationale and design of the Helsinki Carotid Endarterectomy Study 2 (the HeCES2)

    Get PDF
    Introduction: Every fifth ischemic stroke is caused by thromboembolism originating from an atherosclerotic carotid artery plaque. While prevention is the most cost-effective stroke therapy, antiplatelet and cholesterol-lowering drugs have a ceiling effect in their efficacy. Therefore, discovery of novel pathophysiologic targets are needed to improve the primary and secondary prevention of stroke. This article provides a detailed study design and protocol of HeCES2, an observational prospective cohort study with the objective to investigate the pathophysiology of carotid atherosclerosis.Materials and Methods: Recruitment and carotid endarterectomies of the study patients with carotid atherosclerosis were performed from October 2012 to September 2015. After brain and carotid artery imaging, endarterectomised carotid plaques (CPs) and blood samples were collected from 500 patients for detailed biochemical and molecular analyses.Findings to date: We developed a morphological grading for macroscopic characteristics within CPs. The dominant macroscopic CP characteristics were: smoothness 62%, ulceration 61%, intraplaque hemorrhage 60%, atheromatous gruel 59%, luminal coral-type calcification 34%, abundant (44%) and moderate (39%) intramural calcification, and symptom-causing hot spot area 53%.Future plans: By combining clinically oriented and basic biomedical research, this large-scale study attempts to untangle the pathophysiological perplexities of human carotid atherosclerosis.Key MessagesThis article is a rationale and design of the HeCES2 study that is an observational prospective cohort study with the objective to investigate the pathophysiology of carotid atherosclerosis.The HeCES2 study strives to develop diagnostic algorithms including radiologic imaging to identify carotid atherosclerosis patients who warrant surgical treatment.In addition, the study aims at finding out new tools for clinical risk stratification as well as novel molecular targets for drug development.Peer reviewe

    Amorphous carbon thin film electrodes with intrinsic Pt-gradient for hydrogen peroxide detection

    Get PDF
    Nanoscale amorphous carbon thin films with intrinsic Pt gradient show great promise as new electrode materials for electrochemical detection of hydrogen peroxide. Embedding the Pt particles in the carbon matrix during the fabrication process allows tighter integration than, for example, adding them after the fabrication on top of the substrate. Especially, this approach can offer excellent electrochemical properties combined with CMOS compatibility, which is crucial for further device development. Here we provide extensive in depth electrochemical and physicochemical characterization of these novel materials by cyclic voltammetry (CV), chronoamperometry (CA), rotating disk electrode (RDE) experiments, transmission electron microscopy (TEM), Raman spectroscopy, x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Equipped with these detailed results on these materials we proceed to present some suggestions how the physicochemical properties correlate with the results from electrochemical measurements. (i) It is shown that coarsening of the initially very finely dispersed structure occurs both under electron bombardment during TEM imaging as well as during cyclic voltammetry in H2SO4. (ii) Further, it is shown that OH is adsorbed on small Pt islands much more strongly compared to the bulk Pt, which may heavily influence hydrogen peroxide redox reactions on these Pt-containing amorphous carbon films. (iii) Finally, we proceed to demonstrate that despite these complications, these materials show linear response for hydrogen peroxide reduction in neutral phosphate buffered saline combined with very fast response times.Academy of Finland (E.P. grant #274670, T.L. grants # 285015 and #285526), Biocentrum Helsinki, Finnish Cultural Foundation (N.I. grant #00160331) and Foundation for Aalto University Science and Technology are acknowledged for funding

    MYO10-filopodia support basement membranes at pre-invasive tumor boundaries

    Get PDF
    Ductal carcinoma in situ (DCIS) is a pre-invasive stage of breast cancer. During invasion, the encapsulating DCIS basement membrane (BM) is compromised, and tumor cells invade the surrounding stroma. The mech-anisms that regulate functional epithelial BMs in vivo are poorly understood. Myosin-X (MYO10) is a filopodia-inducing protein associated with metastasis and poor clinical outcome in invasive breast cancer (IBC). We identify elevated MYO10 expression in human DCIS and IBC, and this suggests links with disease progres-sion. MYO10 promotes filopodia formation and cell invasion in vitro and cancer-cell dissemination from pro-gressively invasive human DCIS xenografts. However, MYO10-depleted xenografts are more invasive. These lesions exhibit compromised BMs, poorly defined borders, and increased cancer-cell dispersal and EMT -marker-positive cells. In addition, cancer spheroids are dependent on MYO10-filopodia to generate a near-continuous extracellular matrix boundary. Thus, MYO10 is protective in early-stage breast cancer, correlating with tumor-limiting BMs, and pro-invasive at later stages, facilitating cancer-cell dissemination.</p

    Phosphorylation of NFATC1 at PIM1 target sites is essential for its ability to promote prostate cancer cell migration and invasion

    Get PDF
    Background Progression of prostate cancer from benign local tumors to metastatic carcinomas is a multistep process. Here we have investigated the signaling pathways that support migration and invasion of prostate cancer cells, focusing on the role of the NFATC1 transcription factor and its post-translational modifications. We have previously identified NFATC1 as a substrate for the PIM1 kinase and shown that PIM1-dependent phosphorylation increases NFATC1 activity without affecting its subcellular localization. Both PIM kinases and NFATC1 have been reported to promote cancer cell migration, invasion and angiogenesis, but it has remained unclear whether the effects of NFATC1 are phosphorylation-dependent and which downstream targets are involved. Methods We used mass spectrometry to identify PIM1 phosphorylation target sites in NFATC1, and analysed their functional roles in three prostate cancer cell lines by comparing phosphodeficient mutants to wild-type NFATC1. We used luciferase assays to determine effects of phosphorylation on NFAT-dependent transcriptional activity, and migration and invasion assays to evaluate effects on cell motility. We also performed a microarray analysis to identify novel PIM1/NFATC1 targets, and validated one of them with both cellular expression analyses and in silico in clinical prostate cancer data sets. Results Here we have identified ten PIM1 target sites in NFATC1 and found that prevention of their phosphorylation significantly decreases the transcriptional activity as well as the pro-migratory and pro-invasive effects of NFATC1 in prostate cancer cells. We observed that also PIM2 and PIM3 can phosphorylate NFATC1, and identified several novel putative PIM1/NFATC1 target genes. These include the ITGA5 integrin, which is differentially expressed in the presence of wild-type versus phosphorylation-deficient NFATC1, and which is coexpressed with PIM1 and NFATC1 in clinical prostate cancer specimens. Conclusions Based on our data, phosphorylation of PIM1 target sites stimulates NFATC1 activity and enhances its ability to promote prostate cancer cell migration and invasion. Therefore, inhibition of the interplay between PIM kinases and NFATC1 may have therapeutic implications for patients with metastatic forms of cancer

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Analysis of Complement C3 Gene Reveals Susceptibility to Severe Preeclampsia

    Get PDF
    Preeclampsia (PE) is a common vascular disease of pregnancy with genetic predisposition. Dysregulation of the complement system has been implicated, but molecular mechanisms are incompletely understood. In this study, we determined the potential linkage of severe PE to the most central complement gene, C3. Three cohorts of Finnish patients and controls were recruited for a genetic case-control study. Participants were genotyped using Sequenom genotyping and Sanger sequencing. Initially, we studied 259 Finnish patients with severe PE and 426 controls from the Southern Finland PE and the Finnish population-based PE cohorts. We used a custom-made single nucleotide polymorphism (SNP) genotyping assay consisting of 98 SNPs in 18 genes that encode components of the complement system. Following the primary screening, C3 was selected as the candidate gene and consequently Sanger sequenced. Fourteen SNPs from C3 were also genotyped by a Sequenom panel in 960 patients with severe PE and 705 controls, including already sequenced individuals. Three of the 43 SNPs observed within C3 were associated with severe PE: rs2287845 (p = 0.038, OR = 1.158), rs366510 (p = 0.039, OR = 1.158), and rs2287848 (p = 0.041, OR = 1.155). We also discovered 16 SNP haplotypes with extreme linkage disequilibrium in the middle of the gene with a protective (p = 0.044, OR = 0.628) or a predisposing (p = 0.011, OR = 2.110) effect to severe PE depending on the allele combination. Genetic variants associated with PE are located in key domains of C3 and could thereby influence the function of C3. This is, as far as we are aware, the first candidate gene in the complement system with an association to a clinically relevant PE subphenotype, severe PE. The result highlights a potential role for the complement system in the pathogenesis of PE and may help in defining prognostic and therapeutic subgroups of preeclamptic women

    A molecular-based identification resource for the arthropods of Finland

    Get PDF
    Publisher Copyright: © 2021 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.To associate specimens identified by molecular characters to other biological knowledge, we need reference sequences annotated by Linnaean taxonomy. In this study, we (1) report the creation of a comprehensive reference library of DNA barcodes for the arthropods of an entire country (Finland), (2) publish this library, and (3) deliver a new identification tool for insects and spiders, as based on this resource. The reference library contains mtDNA COI barcodes for 11,275 (43%) of 26,437 arthropod species known from Finland, including 10,811 (45%) of 23,956 insect species. To quantify the improvement in identification accuracy enabled by the current reference library, we ran 1000 Finnish insect and spider species through the Barcode of Life Data system (BOLD) identification engine. Of these, 91% were correctly assigned to a unique species when compared to the new reference library alone, 85% were correctly identified when compared to BOLD with the new material included, and 75% with the new material excluded. To capitalize on this resource, we used the new reference material to train a probabilistic taxonomic assignment tool, FinPROTAX, scoring high success. For the full-length barcode region, the accuracy of taxonomic assignments at the level of classes, orders, families, subfamilies, tribes, genera, and species reached 99.9%, 99.9%, 99.8%, 99.7%, 99.4%, 96.8%, and 88.5%, respectively. The FinBOL arthropod reference library and FinPROTAX are available through the Finnish Biodiversity Information Facility (www.laji.fi) at https://laji.fi/en/theme/protax. Overall, the FinBOL investment represents a massive capacity-transfer from the taxonomic community of Finland to all sectors of society.Peer reviewe
    corecore