80 research outputs found

    Fluctuations in viscous fingering

    Full text link
    Our experiments on viscous (Saffman-Taylor) fingering in Hele-Shaw channels reveal finger width fluctuations that were not observed in previous experiments, which had lower aspect ratios and higher capillary numbers Ca. These fluctuations intermittently narrow the finger from its expected width. The magnitude of these fluctuations is described by a power law, Ca^{-0.64}, which holds for all aspect ratios studied up to the onset of tip instabilities. Further, for large aspect ratios, the mean finger width exhibits a maximum as Ca is decreased instead of the predicted monotonic increase.Comment: Revised introduction, smoothed transitions in paper body, and added a few additional minor results. (Figures unchanged.) 4 pages, 3 figures. Submitted to PRE Rapi

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Simplified cavity designs for efficient and compact femtosecond Cr: LiSAF lasers

    No full text
    We describe efficient, compact femtosecond Cr:LiSAF lasers with a reduced component count that combine greater simplicity with improved performance. We observe transform-limited pulses as short as 136 fs centered on 859 nm at a 470 MHz repetition rate. 20 mW of average output power has been achieved for less than 100 mW of incident diode-laser pump power - an optical-to-optical conversion efficiency of over 20%. We have demonstrated an entirely portable, self-contained, battery-powered version of this laser on a 22x28cm2 breadboard, with an electrical-to-optical efficiency of almost 4%. Using four pump laser diodes, we have also achieved operational regimes providing either gigahertz repetition rates or kilowatt peak powers

    Cytomegalovirus subverts macrophage identity

    No full text
    Cytomegaloviruses (CMVs) have co-evolved with their mammalian hosts for millions of years, leading to remarkable host specificity and high infection prevalence. Macrophages, which already populate barrier tissues in the embryo, are the predominant immune cells at potential CMV entry sites. Here we show that, upon CMV infection, macrophages undergo a morphological, immunophenotypic, and metabolic transformation process with features of stemness, altered migration, enhanced invasiveness, and provision of the cell cycle machinery for viral proliferation. This complex process depends on Wnt signaling and the transcription factor ZEB1. In pulmonary infection, mouse CMV primarily targets and reprograms alveolar macrophages, which alters lung physiology and facilitates primary CMV and secondary bacterial infection by attenuating the inflammatory response. Thus, CMV profoundly perturbs macrophage identity beyond established limits of plasticity and rewires specific differentiation processes, allowing viral spread and impairing innate tissue immunity.Tumorimmunolog

    Drilling reveals fluid control on architecture and rupture of the Alpine Fault, New Zealand

    No full text
    Rock damage during earthquake slip affects fluid migration within the fault core and the surrounding damage zone, and consequently coseismic and postseismic strength evolution. Results from the first two boreholes (Deep Fault Drilling Project DFDP-1) drilled through the Alpine fault, New Zealand, which is late in its 200–400 yr earthquake cycle, reveal a &gt;50-m-thick “alteration zone” formed by fluid-rock interaction and mineralization above background regional levels. The alteration zone comprises cemented low-permeability cataclasite and ultramylonite dissected by clay-filled fractures, and obscures the boundary between the damage zone and fault core. The fault core contains a &lt;0.5-m-thick principal slip zone (PSZ) of low electrical resistivity and high spontaneous potential within a 2-m-thick layer of gouge and ultracataclasite. A 0.53 MPa step in fluid pressure measured across this zone confirms a hydraulic seal, and is consistent with laboratory permeability measurements on the order of 10?20 m2. Slug tests in the upper part of the boreholes yield a permeability within the distal damage zone of ?10?14 m2, implying a six-orders-of-magnitude reduction in permeability within the alteration zone. Low permeability within 20 m of the PSZ is confirmed by a subhydrostatic pressure gradient, pressure relaxation times, and laboratory measurements. The low-permeability rocks suggest that dynamic pressurization likely promotes earthquake slip, and motivates the hypothesis that fault zones may be regional barriers to fluid flow and sites of high fluid pressure gradient. We suggest that hydrogeological processes within the alteration zone modify the permeability, strength, and seismic properties of major faults throughout their earthquake cycles
    • 

    corecore