368 research outputs found

    A spatially explicit degree-day model of Rift Valley fever transmission risk in the continental United States

    Get PDF
    A spatially explicit degree-day model was used to evaluate the risk of Rift Valley fever virus (RVFV) transmission by mosquitoes to humans and livestock within five target states in the continental United States: California, Minnesota, Nebraska, New York, and Texas. A geographic information system was used to model potential virus transmission based on a 12-day moving window assessment of the extrinsic incubation period theorized for RVFV in the United States. Risk of potential virus transmission in each state was spatially evaluated on a 10-km grid using average historical daily temperature data from 1994 to 2003. The highest levels of transmission risk occur in California and Texas, with parts of these states at risk of RVFV transmission for up to 8 months per year. Northern Minnesota, central New York, and most of coastal and high-elevation California are at low to null risk. Risk of impact to the livestock industry is greatest in California, Texas, and Nebraska. A standard global climate model was used to evaluate future risk in the year 2030 in Nebraska, and showed an increase of transmission risk days from approximately 3 to 4 months per year

    Application of a degree-day model of West Nile virus transmission risk to the East Coast of the United States of America

    Get PDF
    A geographical information systems model that identifies regions of the United States of America (USA) susceptible to West Nile virus (WNV) transmission risk is presented. This system has previously been calibrated and tested in the western USA; in this paper we use datasets of WNV-killed birds from South Carolina and Connecticut to test the model in the eastern USA. Because their response to WNV infection is highly predictable, American crows were chosen as the primary source for model calibration and testing. Where crow data are absent, other birds are shown to be an effective substitute. Model results show that the same calibrated model demonstrated to work in the western USA has the same predictive ability in the eastern USA, allowing for a continental-scale evaluation of the transmission risk of WNV at a daily time step. The calibrated model is independent of mosquito species and requires inputs of only local maximum and minimum temperatures. Of benefit to the general public and vector control districts, the model predicts the onset of seasonal transmission risk, although it is less effective at identifying the end of the transmission risk season

    The Impact of Methylphenidate on Pubertal Maturation and Bone Age in ADHD Children and Adolescents:Results from the ADHD Drugs Use Chronic Effects (ADDUCE) Project

    Get PDF
    Objective: The short-term safety of methylphenidate (MPH) has been widely demonstrated; however the long-term safety is less clear. The aim of this study was to investigate the safety of MPH in relation to pubertal maturation and to explore the monitoring of bone age.Method: Participants from ADDUCE, a two-year observational longitudinal study with three parallel cohorts (MPH group, no-MPH group, and a non-ADHD control group), were compared with respect to Tanner staging. An Italian subsample of medicated-ADHD was further assessed by the monitoring of bone age.Results: The medicated and unmedicated ADHD groups did not differ in Tanner stages indicating no higher risk of sexual maturational delay in the MPH-treated patients. The medicated subsample monitored for bone age showed a slight acceleration of the bone maturation after 24 months, however their predicted adult height remained stable.Conclusion: Our results do not suggest safety concerns on long-term treatment with MPH in relation to pubertal maturation and growth.</p

    The Impact of Methylphenidate on Pubertal Maturation and Bone Age in ADHD Children and Adolescents:Results from the ADHD Drugs Use Chronic Effects (ADDUCE) Project

    Get PDF
    Objective: The short-term safety of methylphenidate (MPH) has been widely demonstrated; however the long-term safety is less clear. The aim of this study was to investigate the safety of MPH in relation to pubertal maturation and to explore the monitoring of bone age.Method: Participants from ADDUCE, a two-year observational longitudinal study with three parallel cohorts (MPH group, no-MPH group, and a non-ADHD control group), were compared with respect to Tanner staging. An Italian subsample of medicated-ADHD was further assessed by the monitoring of bone age.Results: The medicated and unmedicated ADHD groups did not differ in Tanner stages indicating no higher risk of sexual maturational delay in the MPH-treated patients. The medicated subsample monitored for bone age showed a slight acceleration of the bone maturation after 24 months, however their predicted adult height remained stable.Conclusion: Our results do not suggest safety concerns on long-term treatment with MPH in relation to pubertal maturation and growth.</p

    Galaxy And Mass Assembly (GAMA): stellar mass estimates

    Get PDF
    This paper describes the first catalogue of photometrically derived stellar mass estimates for intermediate-redshift (z < 0.65; median z= 0.2) galaxies in the Galaxy And Mass Assembly (GAMA) spectroscopic redshift survey. These masses, as well as the full set of ancillary stellar population parameters, will be made public as part of GAMA data release 2. Although the GAMA database does include near-infrared (NIR) photometry, we show that the quality of our stellar population synthesis fits is significantly poorer when these NIR data are included. Further, for a large fraction of galaxies, the stellar population parameters inferred from the optical-plus-NIR photometry are formally inconsistent with those inferred from the optical data alone. This may indicate problems in our stellar population library, or NIR data issues, or both; these issues will be addressed for future versions of the catalogue. For now, we have chosen to base our stellar mass estimates on optical photometry only. In light of our decision to ignore the available NIR data, we examine how well stellar mass can be constrained based on optical data alone. We use generic properties of stellar population synthesis models to demonstrate that restframe colour alone is in principle a very good estimator of stellar mass-to-light ratio, M*/Li. Further, we use the observed relation between restframe (g−i) and M*/Li for real GAMA galaxies to argue that, modulo uncertainties in the stellar evolution models themselves, (g−i) colour can in practice be used to estimate M*/Li to an accuracy of ≲0.1 dex (1σ). This ‘empirically calibrated' (g−i)-M*/Li relation offers a simple and transparent means for estimating galaxies' stellar masses based on minimal data, and so provides a solid basis for other surveys to compare their results to z≲0.4 measurements from GAM

    The Novel Mouse Mutation Oblivion Inactivates the PMCA2 Pump and Causes Progressive Hearing Loss

    Get PDF
    Progressive hearing loss is common in the human population, but we have few clues to the molecular basis. Mouse mutants with progressive hearing loss offer valuable insights, and ENU (N-ethyl-N-nitrosourea) mutagenesis is a useful way of generating models. We have characterised a new ENU-induced mouse mutant, Oblivion (allele symbol Obl), showing semi-dominant inheritance of hearing impairment. Obl/+ mutants showed increasing hearing impairment from post-natal day (P)20 to P90, and loss of auditory function was followed by a corresponding base to apex progression of hair cell degeneration. Obl/Obl mutants were small, showed severe vestibular dysfunction by 2 weeks of age, and were completely deaf from birth; sensory hair cells were completely degenerate in the basal turn of the cochlea, although hair cells appeared normal in the apex. We mapped the mutation to Chromosome 6. Mutation analysis of Atp2b2 showed a missense mutation (2630C→T) in exon 15, causing a serine to phenylalanine substitution (S877F) in transmembrane domain 6 of the PMCA2 pump, the resident Ca2+ pump of hair cell stereocilia. Transmembrane domain mutations in these pumps generally are believed to be incompatible with normal targeting of the protein to the plasma membrane. However, analyses of hair cells in cultured utricular maculae of Obl/Obl mice and of the mutant Obl pump in model cells showed that the protein was correctly targeted to the plasma membrane. Biochemical and biophysical characterisation showed that the pump had lost a significant portion of its non-stimulated Ca2+ exporting ability. These findings can explain the progressive loss of auditory function, and indicate the limits in our ability to predict mechanism from sequence alone

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Galaxy and Mass Assembly: FUV, NUV, ugrizYJHK Petrosian, Kron and Sérsic photometry

    Get PDF
    In order to generate credible 0.1-2 μm spectral energy distributions, the Galaxy and Mass Assembly (GAMA) project requires many gigabytes of imaging data from a number of instruments to be reprocessed into a standard format. In this paper, we discuss the software infrastructure we use, and create self-consistent ugrizYJHK photometry for all sources within the GAMA sample. Using UKIDSS and SDSS archive data, we outline the pre-processing necessary to standardize all images to a common zero-point, the steps taken to correct for the seeing bias across the data set and the creation of gigapixel-scale mosaics of the three 4 × 12 deg2 GAMA regions in each filter. From these mosaics, we extract source catalogues for the GAMA regions using elliptical Kron and Petrosian matched apertures. We also calculate Sérsic magnitudes for all galaxies within the GAMA sample using sigma, a galaxy component modelling wrapper for galfit 3. We compare the resultant photometry directly and also calculate the r-band galaxy luminosity function for all photometric data sets to highlight the uncertainty introduced by the photometric method. We find that (1) changing the object detection threshold has a minor effect on the best-fitting Schechter parameters of the overall population (M*± 0.055 mag, α± 0.014, ϕ*± 0.0005 h3 Mpc−3); (2) there is an offset between data sets that use Kron or Petrosian photometry, regardless of the filter; (3) the decision to use circular or elliptical apertures causes an offset in M* of 0.20 mag; (4) the best-fitting Schechter parameters from total-magnitude photometric systems (such as SDSS modelmag or Sérsic magnitudes) have a steeper faint-end slope than photometric systems based upon Kron or Petrosian measurements; and (5) our Universe's total luminosity density, when calculated using Kron or Petrosian r-band photometry, is underestimated by at least 15 per cen

    A cross-sectional survey of prevalence and correlates of suicidal ideation and suicide attempts among prisoners in New South Wales, Australia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We aimed to estimate the prevalence of suicidal ideation and suicide attempt among prisoners in New South Wales, Australia; and, among prisoners reporting suicidal ideation, to identify factors associated with suicide attempt.</p> <p>Methods</p> <p>A cross-sectional design was used. Participants were a random, stratified sample of 996 inmates who completed a telephone survey. The estimated population prevalence of suicidal ideation and suicide attempt were calculated and differences by sex and Aboriginality were tested using <it>χ</it>2 tests. Correlates of suicidal ideation and suicide attempt were tested using logistic regression.</p> <p>Results</p> <p>One-third of inmates reported lifetime suicidal ideation and one-fifth had attempted suicide. Women and Aboriginal participants were significantly more likely than men and non-Aboriginal participants, respectively, to report attempting suicide. Correlates of suicidal ideation included violent offending, traumatic brain injury, depression, self-harm, and psychiatric hospitalisation. Univariate correlates of suicide attempt among ideators were childhood out-of-home care, parental incarceration and psychiatric hospitalization; however, none of these remained significant in a multivariate model.</p> <p>Conclusions</p> <p>Suicidal ideation and attempts are highly prevalent among prisoners compared to the general community. Assessment of suicide risk is a critical task for mental health clinicians in prisons. Attention should be given to ensuring assessments are gender- and culturally sensitive. Indicators of mental illness may not be accurate predictors of suicide attempt. Indicators of childhood trauma appear to be particularly relevant to risk of suicide attempt among prisoners and should be given attention as part of risk assessments.</p
    corecore