38 research outputs found

    The Embedding of Meta-tetra(Hydroxyphenyl)-Chlorin into Silica Nanoparticle Platforms for Photodynamic Therapy and Their Singlet Oxygen Production and pH-dependent Optical Properties ¶

    Full text link
    This study relates to nanoparticle (NP) platforms that attach to tumor cells externally and only deliver singlet oxygen for photodynamic therapy (PDT) while conserving the embedded photosensitizers (PS). As a model, we demonstrate the successful embedding of the PS meta-tetra(hydroxyphenyl)-chlorin ( m -THPC) in NP that are based on a sol–gel silica matrix and also show its positive effect on the singlet oxygen production. The embedding of m -THPC inside silica NP is accomplished by a modified StÖber sol–gel process, in which (3-aminopropyl)-triethoxysilane is introduced during the reaction. Singlet oxygen delivery by the targetable photodynamic NP exceeds that from free PS molecules. In the physiological pH range, there is no significant pH-induced decrease in the fluorescence of m -THPC embedded in silica NP, which might otherwise affect the efficiency of PDT.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74989/1/0031-8655_2003_0780587TEOMIS2.0.CO2.pd

    Current state of fine mineral tailings treatment: A critical review on theory and practice

    Get PDF
    The mining industry produces fluid fine mineral tailings on the order of millions of tonnes each year, with billions of tonnes already stored globally. This trend is expected to escalate as demand for mineral products continues to grow with increasingly lower grade ores being more commonly exploited by hydrometallurgy. Ubiquitous presence and enrichment of fine solids such as silt and clays in fluid fine mineral tailings prevent efficient solid-liquid separation and timely re-use of valuable process water. Long-term storage of such fluid waste materials not only incurs a huge operating cost, but also creates substantial environmental liabilities of tailings ponds for mining operators. This review broadly examines current theoretical understandings and prevalent industrial practices on treating fine mineral tailings for greater water recovery and reduced environmental footprint of mining operations

    Reactive-Oxygen-Species-Responsive Drug Delivery Systems: Promises and Challenges

    Get PDF
    Given the increasing evidence indicates that many pathological conditions are associated with elevated reactive oxygen species (ROS) levels, there have been growing research efforts focused on the development of ROS-responsive carrier systems because of their promising potential to realize more specific diagnosis and effective therapy. By judicious utilization of ROS-responsive functional moieties, a wide range of carrier systems has been designed for ROS-mediated drug delivery. In this review article, insights into design principle and recent advances on the development of ROS-responsive carrier systems for drug delivery applications are provided alongside discussion of their in vitro and in vivo evaluation. In particular, the discussions in this article will mainly focus on polymeric nanoparticles, hydrogels, inorganic nanoparticles, and activatable prodrugs that have been integrated with diverse ROS-responsive moieties for spatiotemporally controlled release of drugs for effective therapy.1149sciescopu

    Proceedings of Patient Reported Outcome Measure’s (PROMs) Conference Oxford 2017: Advances in Patient Reported Outcomes Research

    Get PDF
    A33-Effects of Out-of-Pocket (OOP) Payments and Financial Distress on Quality of Life (QoL) of People with Parkinson’s (PwP) and their Carer

    KneeTex: an ontology–driven system for information extraction from MRI reports

    Get PDF
    Background. In the realm of knee pathology, magnetic resonance imaging (MRI) has the advantage of visualising all structures within the knee joint, which makes it a valuable tool for increasing diagnostic accuracy and planning surgical treatments. Therefore, clinical narratives found in MRI reports convey valuable diagnostic information. A range of studies have proven the feasibility of natural language processing for information extraction from clinical narratives. However, no study focused specifically on MRI reports in relation to knee pathology, possibly due to the complexity of knee anatomy and a wide range of conditions that may be associated with different anatomical entities. In this paper we describe KneeTex, an information extraction system that operates in this domain. Methods. As an ontology–driven information extraction system, KneeTex makes active use of an ontology to strongly guide and constrain text analysis. We used automatic term recognition to facilitate the development of a domain–specific ontology with sufficient detail and coverage for text mining applications. In combination with the ontology, high regularity of the sublanguage used in knee MRI reports allowed us to model its processing by a set of sophisticated lexico–semantic rules with minimal syntactic analysis. The main processing steps involve named entity recognition combined with coordination, enumeration, ambiguity and co–reference resolution, followed by text segmentation. Ontology–based semantic typing is then used to drive the template filling process. Results. We adopted an existing ontology, TRAK (Taxonomy for RehAbilitation of Knee conditions), for use within KneeTex. The original TRAK ontology expanded from 1,292 concepts, 1,720 synonyms and 518 relationship instances to 1,621 concepts, 2,550 synonyms and 560 relationship instances. This provided KneeTex with a very fine–grained lexico–semantic knowledge base, which is highly attuned to the given sublanguage. Information extraction results were evaluated on a test set of 100 MRI reports. A gold standard consisted of 1,259 filled template records with the following slots: finding, finding qualifier, negation, certainty, anatomy and anatomy qualifier. KneeTex extracted information with precision of 98.00%, recall of 97.63% and F–measure of 97.81%, the values of which are in line with human–like performance. Conclusions. KneeTex is an open–source, stand–alone application for information extraction from narrative reports that describe an MRI scan of the knee. Given an MRI report as input, the system outputs the corresponding clinical findings in the form of JavaScript Object Notation objects. The extracted information is mapped onto TRAK, an ontology that formally models knowledge relevant for the rehabilitation of knee conditions. As a result, formally structured and coded information allows for complex searches to be conducted efficiently over the original MRI reports, thereby effectively supporting epidemiologic studies of knee conditions

    BANISHED INTO EXISTENCE: AGRITECTURE AT THE INTERSECTION OF ARCHITECTURE & AGRICULTURE

    No full text
    Building operating emissions account for 28% of global greenhouse gas emissions while building components account for 11%. To mitigate these effects, we must reduce the carbon footprints of construction activities, building materials, and sequestering carbon dioxide in forests and farmland. Industrial hemp is a solution to all these challenges. Hemp is a carbon-negative crop, absorbing more carbon dioxide than trees, and thus represents a unique sequestration opportunity. By using hemp as a construction material, we can improve the thermal efficiency of our buildings, consequently reducing operational carbon. Finally, by substituting hempbrick, a mixture of hemp and various binders, for more carbon-intensive materials, we can reduce the embodied carbon of the built environment. This thesis proposes a productive hemp landscape that will be open to the public as an agritourism destination. The project will raise public awareness about hemp cultivation as an agricultural opportunity and demonstrate the potential of hemp as a construction material, highlighting its multiple possible contributions to tackling the climate crisis

    Adapting Assateague: Design for Resilient Buildings and Landscapes at Assategue State Park

    Get PDF
    Final project for ARCH601: Adapting Assateague Studio (Summer 2021). University of Maryland, College Park.Through their work with the National Center for Smart Growth at the University of Maryland (UMD), the Maryland Department of Natural Resources (MDNR) commissioned this report from the university’s Partnership for Action Learning in Sustainability (PALS). PALS works with local jurisdictions throughout Maryland to identify projects and problems that can be taught through university courses where students focus on developing innovative, research-based solutions. Adapting Assateague Studio is an architectural studio concentration on advanced topical inquiry. This course was run in partnership with the PALS program. The Studio was tasked to work directly with the Department of Natural Resources to design a new Ranger Station and create a Resiliency Masterplan for the island.Maryland Department of Natural Resources (MDNR

    Photodynamic Characterization and In Vitro Application of Methylene Blue-containing Nanoparticle Platforms ¶

    Full text link
    This article presents the development and characterization of nanoparticles loaded with methylene blue (MB), which are designed to be administered to tumor cells externally and deliver singlet oxygen ( 1 O 2 ) for photodynamic therapy (PDT), i.e. cell kill via oxidative stress to the membrane. We demonstrated the encapsulation of MB, a photosensitizer (PS), in three types of sub-200 nm nanoparticles, composed of polyacrylamide, sol-gel silica and organically modified silicate (ORMOSIL), respectively. Induced by light irradiation, the entrapped MB generated 1 O 2 ), and the produced 1 O 2 was measured quantitatively with anthracene-9, 10-dipropionic acid, disodium salt, to compare the effects of different matrices on 1 O 2 delivery. Among these three different kinds of nanoparticles, the polyacrylamide nanoparticles showed the most efficient delivery of 1 O 2 but its loading of MB was low. In contrast, the sol-gel nanoparticles had the best MB loading but the least efficient 1 O 2 delivery. In addition to investigating the matrix effects, a preliminary in vitro PDT study using the MB-loaded polyacrylamide nanoparticles was conducted on rat C6 glioma tumor cells with positive photodynamic results. The encapsulation of MB in nanoparticles should diminish the interaction of this PS with the biological milieu, thus facilitating its systemic administration. Furthermore, the concept of the drug-delivering nanoparticles has been extended to a new type of dynamic nanoplatform (DNP) that only delivers 1 O 2 . This DNP could also be used as a targeted multifunctional platform for combined diagnostics and therapy of cancer.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74716/1/j.1751-1097.2005.tb00181.x.pd
    corecore