240 research outputs found

    Superconducting Nb-film LC resonator

    Full text link
    Sputtered Nb thin-film LC resonators for low frequencies at 0.5 MHz have been fabricated and tested in the temperature range 0.05--1 K in magnetic fields up to 30 mT. Their Q value increases towards decreasing temperature as sqrt(T) and reaches 10^3 at 0.05 K. As a function of magnetic field Q is unstable and displays variations up to 50%, which are reproducible from one field sweep to the next. These instabilities are attributed to dielectric losses in the plasma deposited SiO_2 insulation layer, since the thin-film coil alone reaches a Q > 10^5 at 0.05 K.Comment: 6 pages, 7 figures, submitted to Review of Scientific Instrument

    Molecular organization of the tear fluid lipid layer

    Get PDF
    The tear fluid protects the corneal epithelium from drying out as well as from invasion by pathogens. It also provides cell nutrients. Similarly to lung surfactant, it is composed of an aqueous phase covered by a lipid layer. Here we describe the molecular organization of the anterior lipid layer of the tear film. Artificial tear fluid lipid layers (ATFLLs) composed of egg yolk phosphatidylcholine (60 mol %), free fatty acids (20 mol %), cholesteryl oleate (10 mol %), and triglycerides (10 mol %) were deposited on the air-water interface and their physico-chemical behavior was compared to egg-yolk phosphatidylcholine monolayers by using Langmuir-film balance techniques, x-ray diffraction, and imaging techniques as well as in silico molecular level simulations. At low surface pressures, ATFLLs were organized at the air-water interface as heterogeneous monomolecular films. Upon compression the ATFLLs collapsed toward the air phase and formed hemispherelike lipid aggregates. This transition was reversible upon relaxation. These results were confirmed by molecular-level simulations of ATFLL, which further provided molecular-scale insight into the molecular distributions inside and dynamics of the tear film. Similar type of behavior is observed in lung surfactant but the folding takes place toward the aqueous phase. The results provide novel information of the function of lipids in the tear fluid

    First Measurement of the Transverse Spin Asymmetries of the Deuteron in Semi-Inclusive Deep Inelastic Scattering

    Full text link
    First measurements of the Collins and Sivers asymmetries of charged hadrons produced in deep-inelastic scattering of muons on a transversely polarized 6-LiD target are presented. The data were taken in 2002 with the COMPASS spectrometer using the muon beam of the CERN SPS at 160 GeV/c. The Collins asymmetry turns out to be compatible with zero, as does the measured Sivers asymmetry within the present statistical errors.Comment: 6 pages, 2 figure

    Longitudinal double spin asymmetries in single hadron quasi-real photoproduction at high pTp_T

    Get PDF
    We measured the longitudinal double spin asymmetries ALLA_{LL} for single hadron muo-production off protons and deuterons at photon virtuality Q2Q^2 < 1(GeV/c\it c)2^2 for transverse hadron momenta pTp_T in the range 0.7 GeV/c\it c to 4 GeV/c\it c . They were determined using COMPASS data taken with a polarised muon beam of 160 GeV/c\it c or 200 GeV/c\it c impinging on polarised 6LiD\mathrm{{}^6LiD} or NH3\mathrm{NH_3} targets. The experimental asymmetries are compared to next-to-leading order pQCD calculations, and are sensitive to the gluon polarisation ΔG\Delta G inside the nucleon in the range of the nucleon momentum fraction carried by gluons 0.05<xg<0.20.05 < x_g < 0.2

    Interplay among transversity induced asymmetries in hadron leptoproduction

    Get PDF
    In the fragmentation of a transversely polarized quark several left-right asymmetries are possible for the hadrons in the jet. When only one unpolarized hadron is selected, it exhibits an azimuthal modulation known as Collins effect. When a pair of oppositely charged hadrons is observed, three asymmetries can be considered, a di-hadron asymmetry and two single hadron asymmetries. In lepton deep inelastic scattering on transversely polarized nucleons all these asymmetries are coupled with the transversity distribution. From the high statistics COMPASS data on oppositely charged hadron-pair production we have investigated for the first time the dependence of these three asymmetries on the difference of the azimuthal angles of the two hadrons. The similarity of transversity induced single and di-hadron asymmetries is discussed. A new analysis of the data allows to establish quantitative relationships among them, providing for the first time strong experimental indication that the underlying fragmentation mechanisms are all driven by a common physical process.Comment: 6 figure

    Interplay among transversity induced asymmetries in hadron leptoproduction

    Get PDF
    In the fragmentation of a transversely polarized quark several left-right asymmetries are possible for the hadrons in the jet. When only one unpolarized hadron is selected, it exhibits an azimuthal modulation known as Collins effect. When a pair of oppositely charged hadrons is observed, three asymmetries can be considered, a di-hadron asymmetry and two single hadron asymmetries. In lepton deep inelastic scattering on transversely polarized nucleons all these asymmetries are coupled with the transversity distribution. From the high statistics COMPASS data on oppositely charged hadron-pair production we have investigated for the first time the dependence of these three asymmetries on the difference of the azimuthal angles of the two hadrons. The similarity of transversity induced single and di-hadron asymmetries is discussed. A new analysis of the data allows to establish quantitative relationships among them, providing for the first time strong experimental indication that the underlying fragmentation mechanisms are all driven by a common physical process.Comment: 6 figure

    The COMPASS Experiment at CERN

    Get PDF
    The COMPASS experiment makes use of the CERN SPS high-intensitymuon and hadron beams for the investigation of the nucleon spin structure and the spectroscopy of hadrons. One or more outgoing particles are detected in coincidence with the incoming muon or hadron. A large polarized target inside a superconducting solenoid is used for the measurements with the muon beam. Outgoing particles are detected by a two-stage, large angle and large momentum range spectrometer. The setup is built using several types of tracking detectors, according to the expected incident rate, required space resolution and the solid angle to be covered. Particle identification is achieved using a RICH counter and both hadron and electromagnetic calorimeters. The setup has been successfully operated from 2002 onwards using a muon beam. Data with a hadron beam were also collected in 2004. This article describes the main features and performances of the spectrometer in 2004; a short summary of the 2006 upgrade is also given.Comment: 84 papes, 74 figure

    Leading-order determination of the gluon polarisation from semi-inclusive deep inelastic scattering data

    Get PDF
    Using a novel analysis technique, the gluon polarisation in the nucleon is re-evaluated using the longitudinal double-spin asymmetry measured in the cross section of semi-inclusive single-hadron muoproduction with photon virtuality Q2>1 (GeV/c)2Q^2>1~({\rm GeV}/c)^2. The data were obtained by the COMPASS experiment at CERN using a 160 GeV/cc polarised muon beam impinging on a polarised 6^6LiD target. By analysing the full range in hadron transverse momentum pTp_{\rm T}, the different pTp_{\rm T}-dependences of the underlying processes are separated using a neural-network approach. In the absence of pQCD calculations at next-to-leading order in the selected kinematic domain, the gluon polarisation Δg/g\Delta g/g is evaluated at leading order in pQCD at a hard scale of μ2=Q2=3(GeV/c)2\mu^2= \langle Q^2 \rangle = 3 ({\rm GeV}/c)^2. It is determined in three intervals of the nucleon momentum fraction carried by gluons, xgx_{\rm g}, covering the range 0.04 ⁣< ⁣xg ⁣< ⁣0.280.04 \!<\! x_{ \rm g}\! <\! 0.28~ and does not exhibit a significant dependence on xgx_{\rm g}. The average over the three intervals, Δg/g=0.113±0.038(stat.)±0.036(syst.)\langle \Delta g/g \rangle = 0.113 \pm 0.038_{\rm (stat.)}\pm 0.036_{\rm (syst.)} at xg0.10\langle x_{\rm g} \rangle \approx 0.10, suggests that the gluon polarisation is positive in the measured xgx_{\rm g} range.Comment: 14 pages, 6 figure

    Resonance Production and ππ\pi\pi S-wave in π+pπππ++precoil\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{recoil} at 190 GeV/c

    Full text link
    The COMPASS collaboration has collected the currently largest data set on diffractively produced πππ+\pi^-\pi^-\pi^+ final states using a negative pion beam of 190 GeV/c momentum impinging on a stationary proton target. This data set allows for a systematic partial-wave analysis in 100 bins of three-pion mass, 0.5<m3π<2.50.5 < m_{3\pi} < 2.5 GeV/c2^2 , and in 11 bins of the reduced four-momentum transfer squared, 0.1<t<1.00.1 < t < 1.0 (GeV/c)2^2 . This two-dimensional analysis offers sensitivity to genuine one-step resonance production, i.e. the production of a state followed by its decay, as well as to more complex dynamical effects in nonresonant 3π3\pi production. In this paper, we present detailed studies on selected 3π3\pi partial waves with JPC=0+J^{PC} = 0^{-+}, 1++1^{++}, 2+2^{-+}, 2++2^{++}, and 4++4^{++}. In these waves, we observe the well-known ground-state mesons as well as a new narrow axial-vector meson a1(1420)a_1(1420) decaying into f0(980)πf_0(980) \pi. In addition, we present the results of a novel method to extract the amplitude of the ππ+\pi^-\pi^+ subsystem with IGJPC=0+0++I^{G}J^{PC} = 0^+ 0^{++} in various partial waves from the πππ+\pi^-\pi^-\pi^+ data. Evidence is found for correlation of the f0(980)f_0(980) and f0(1500)f_0(1500) appearing as intermediate ππ+\pi^- \pi^+ isobars in the decay of the known π(1800)\pi(1800) and π2(1880)\pi_2(1880).Comment: 96 page
    corecore