11 research outputs found

    Brain structure, IQ, and psychopathology in young offspring of patients with schizophrenia or bipolar disorder

    Get PDF
    BACKGROUND.: Studying offspring of schizophrenia (SZo) and bipolar disorder patients (BDo) provides important information on the putative neurodevelopmental trajectories underlying development toward severe mental illnesses. We compared intracranial volume (ICV), as a marker for neurodevelopment, and global and local brain measures between SZo or BDo and control offspring (Co) in relation to IQ and psychopathology. METHODS.: T1-weighted magnetic resonance imaging (MRI) brain scans were obtained from 146 participants (8-19 years; 40 SZo, 66 BDo, 40 Co). Linear mixed models were applied to compare ICV, global, and local brain measures between groups. To investigate the effect of ICV, IQ (four subtests Wechsler Intelligence Scale for Children/Wechsler Adult Intelligence Scale-III) or presence of psychopathology these variables were each added to the model. RESULTS.: SZo and BDo had significantly lower IQ and more often met criteria for a lifetime psychiatric disorder than Co. ICV was significantly smaller in SZo than in BDo (d = -0.56) and Co (d = -0.59), which was largely independent of IQ (respectively, d = -0.54 and d = -0.35). After ICV correction, the cortex was significantly thinner in SZo than in BDo (d = -0.42) and Co (d = -0.75) and lateral ventricles were larger in BDo than in Co (d = 0.55). Correction for IQ or lifetime psychiatric diagnosis did not change these findings. CONCLUSIONS.: Despite sharing a lower IQ and a higher prevalence of psychiatric disorders, brain abnormalities in BDo appear less pronounced (but are not absent) than in SZo. Lower ICV in SZo implies that familial risk for schizophrenia has a stronger association with stunted early brain development than familial risk for bipolar disorder

    The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses

    Get PDF
    Plants actively perceive and respond to perturbations in their cell walls which arise during growth, biotic and abiotic stresses. However, few components involved in plant cell wall integrity sensing have been described to date. Using a reverse-genetic approach, we identified the Arabidopsis thaliana leucine-rich repeat receptor kinase MIK2 as an important regulator of cell wall damage responses triggered upon cellulose biosynthesis inhibition. Indeed, loss-of-function mik2 alleles are strongly affected in immune marker gene expression, jasmonic acid production and lignin deposition. MIK2 has both overlapping and distinct functions with THE1, a malectin-like receptor kinase previously proposed as cell wall integrity sensor. In addition, mik2 mutant plants exhibit enhanced leftward root skewing when grown on vertical plates. Notably, natural variation in MIK2 (also named LRR-KISS) has been correlated recently to mild salt stress tolerance, which we could confirm using our insertional alleles. Strikingly, both the increased root skewing and salt stress sensitivity phenotypes observed in the mik2 mutant are dependent on THE1. Finally, we found that MIK2 is required for resistance to the fungal root pathogen Fusarium oxysporum. Together, our data identify MIK2 as a novel component in cell wall integrity sensing and suggest that MIK2 is a nexus linking cell wall integrity sensing to growth and environmental cues

    10Kin1day: A Bottom-Up Neuroimaging Initiative.

    Get PDF
    We organized 10Kin1day, a pop-up scientific event with the goal to bring together neuroimaging groups from around the world to jointly analyze 10,000+ existing MRI connectivity datasets during a 3-day workshop. In this report, we describe the motivation and principles of 10Kin1day, together with a public release of 8,000+ MRI connectome maps of the human brain

    Abnormal agency experiences in schizophrenia patients : examining the role of psychotic symptoms and familial risk

    No full text
    Experiencing self-agency over one’s own action outcomes is essential for social functioning. Recent research revealed that patients with schizophrenia do not use implicitly available information about their action-outcomes (i.e., prime-based agency inference) to arrive at self-agency experiences. Here, we examined whether this is related to symptoms and/or familial risk to develop the disease. Fifty-four patients, 54 controls, and 19 unaffected (and unrelated) siblings performed an agency inference task, in which experienced agency was measured over action-outcomes that matched or mismatched outcome-primes that were presented before action performance. The Positive and Negative Syndrome Scale (PANSS) and Comprehensive Assessment of Symptoms and History (CASH) were administered to assess psychopathology. Impairments in prime-based inferences did not differ between patients with symptoms of over- and underattribution. However, patients with agency underattribution symptoms reported significantly lower overall self-agency experiences. Siblings displayed stronger prime-based agency inferences than patients, but weaker prime-based inferences than healthy controls. However, these differences were not statistically significant. Findings suggest that impairments in prime-based agency inferences may be a trait characteristic of schizophrenia. Moreover, this study may stimulate further research on the familial basis and the clinical relevance of impairments in implicit agency inferences

    Impaired frontal processing during agency inferences in schizophrenia

    No full text
    People generally experience themselves as the cause of outcomes following from their own actions. Such agency inferences occur fluently and are essential to social interaction. However, schizophrenia patients often experience difficulties in distinguishing their own actions from those of others. Building on recent research into the neural substrates underlying agency inferences in healthy individuals, the present study investigates how these inferences are represented on a neural level in patients with schizophrenia. Thirty-one schizophrenia patients and 31 healthy controls performed an agency inference task while functional magnetic resonance images were obtained. Participants were presented with a task wherein the relationship between their actions and the subsequent outcomes was ambiguous. They received instructions to cause specific outcomes to occur by pressing a key, but the task was designed to match or mismatch the color outcome with the participants' goal. Both groups experienced stronger agency when their goal matched (vs. mismatched) the outcome. However, region of interest analyses revealed that only controls showed the expected involvement of the medial prefrontal cortex and superior frontal gyrus, whereas in patients the agency experience was not related to brain activation. These findings are discussed in light of a hypofrontality model of schizophrenia

    Brain GABA levels across psychiatric disorders : A systematic literature review and meta-analysis of 1H-MRS studies

    No full text
    The inhibitory gamma-aminobutyric acid (GABA) system is involved in the etiology of most psychiatric disorders, including schizophrenia, autism spectrum disorder (ASD) and major depressive disorder (MDD). It is therefore not surprising that proton magnetic resonance spectroscopy (1H-MRS) is increasingly used to investigate in vivo brain GABA levels. However, integration of the evidence for altered in vivo GABA levels across psychiatric disorders is lacking. We therefore systematically searched the clinical 1H-MRS literature and performed a meta-analysis. A total of 40 studies (N = 1,591) in seven different psychiatric disorders were included in the meta-analysis: MDD (N = 437), schizophrenia (N = 517), ASD (N = 150), bipolar disorder (N = 129), panic disorder (N = 81), posttraumatic stress disorder (PTSD) (N = 104), and attention deficit/hyperactivity disorder (ADHD) (N = 173). Brain GABA levels were lower in ASD (standardized mean difference [SMD] = −0.74, P = 0.001) and in depressed MDD patients (SMD = −0.52, P = 0.005), but not in remitted MDD patients (SMD = −0.24, P = 0.310) compared with controls. In schizophrenia this finding did not reach statistical significance (SMD = −0.23, P = 0.089). No significant differences in GABA levels were found in bipolar disorder, panic disorder, PTSD, and ADHD compared with controls. In conclusion, this meta-analysis provided evidence for lower brain GABA levels in ASD and in depressed (but not remitted) MDD patients compared with healthy controls. Findings in schizophrenia were more equivocal. Even though future 1H-MRS studies could greatly benefit from a longitudinal design and consensus on the preferred analytical approach, it is apparent that 1H-MRS studies have great potential in advancing our understanding of the role of the GABA system in the pathogenesis of psychiatric disorders

    Dynamics of Brain Structure and its Genetic Architecture over the Lifespan

    No full text
    Human brain structure changes throughout our lives. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental, and neurodegenerative diseases. While heritable, specific loci in the genome that influence these rates are largely unknown. Here, we sought to find common genetic variants that affect rates of brain growth or atrophy, in the first genome-wide association analysis of longitudinal changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 10,163 individuals aged 4 to 99 years, on average 3.5 years apart, were used to compute rates of morphological change for 15 brain structures. We discovered 5 genome-wide significant loci and 15 genes associated with brain structural changes. Most individual variants exerted age-dependent effects. All identified genes are expressed in fetal and adult brain tissue, and some exhibit developmentally regulated expression across the lifespan. We demonstrate genetic overlap with depression, schizophrenia, cognitive functioning, height, body mass index and smoking. Several of the discovered loci are implicated in early brain development and point to involvement of metabolic processes. Gene-set findings also implicate immune processes in the rates of brain changes. Taken together, in the world’s largest longitudinal imaging genetics dataset we identified genetic variants that alter age-dependent brain growth and atrophy throughout our lives

    Genetic variants associated with longitudinal changes in brain structure across the lifespan

    No full text
    Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging
    corecore