26 research outputs found

    Accuracy of Continuous Central Venous Oxygen Saturation Monitoring in Patients Undergoing Cardiac Surgery

    Get PDF
    Objective: Continuous assessment of central venous oxygen saturation (ScevoxO2) with the CeVOX device (Pulsion Medical Systems, Munich, Germany) was evaluated against central venous oxygen saturation (ScvO2) determined by co-oximetry. Methods: In 20 cardiac surgical patients, a CeVOX fiberoptic probe was introduced into a standard central venous catheter placed in the right internal jugular vein and advanced 2-3cm beyond the catheter tip. After invivo calibration of the probe, ScevoxO2, ScvO2, mixed venous oxygen saturation (SmvO2) haemoglobin (Hb), body temperature, heart rate, central venous and mean arterial pressure, and cardiac index were assessed simultaneously at 30min intervals during surgery and at 60min intervals during recovery in the intensive care unit. Agreement between ScevoxO2, and ScvO2 was determined by Bland-Altman analysis. Simple regression analysis was used to assess the correlation of ScevoxO2, and ScvO2 to Hb, body temperature and haemodynamic parameters. Results: Values of ScevoxO2 and ScvO2 (84 data pairs during surgery and 106 in the intensive care unit) ranged between 45-89% and 43-90%, respectively. Mean bias and limits of agreement of ScevoxO2 and ScvO2 were -0.9 (−7.9/+6.1)% during surgery and −1.2 (−10.5/+8.1)% in the intensive care unit. In 37.9% of all measured data pairs, the difference between ScevoxO2 and ScvO2 was beyond clinically acceptable limits (≥1 s.d.). Mean bias was significantly influenced by cardiac index. Sensitivity and specificity of ScevoxO2 to detect substantial (≥1 s.d.) changes in ScvO2 were 89 and 82%, respectively. Conclusions: In adult patients during and after cardiac surgery, the current version of the CeVOX device might not be the tool to replace ScvO2 determined by co-oxymetry, although sensitivity and specificity of ScevoxO2 to predict substantial changes in ScvO2 were acceptabl

    Nanoporous-gold-based composites : toward tensile ductility

    Get PDF
    We report on mechanical tests on interpenetrating-phase nanocomposite materials made by vacuum impregnation of nanoscale metal networks with a polymer. The metal component is nanoporous gold made by dealloying, whereas two epoxy resins and polyurethane are explored as the polymer component. The composites are strong and deformable in compression. Although previous observations invariably indicate tensile brittleness for nanoporous gold, composite samples made from cm-sized nanoporous samples enable macroscopic tensile and four-point bending tests that show ductility. This implies that the high strength of individual metal objects such as nanowires can now be incorporated into a strong and ductile material from which macroscopic things can be formed. In fact, a rule-of-mixture-type analysis of the stresses carried by the metal phase suggests quantitative agreement with data reported from separate experiments on small-scale gold nanostructures

    Huygens STED Deconvolution Increases Signal-to-Noise and Image Resolution towards 22 nm

    Get PDF
    Image restoration aims to make optimal use of the data provided by the light microscope to recover the object being imaged; in other words, to "figure out what the microscope is actually trying to tell us.” To achieve this, the distortions introduced by the imaging process need to be undone insofar possibl

    Photovoltaik-Potenzial auf Infrastrukturbauten und bei weiteren sehr grossen Anlagen im Kanton Zürich

    Get PDF
    Im Auftrag der Baudirektion des Kantons Zürich wurden die PV-Potenziale im Kanton Zürich auf Dach- und Fassadenflächen, auf landwirtschaftlichen Nutzflächen (LN) mit Agri-PV, sowie auf Parkplatzarealen Abwasserreinigungsanlagen (ARA) und entlang Strassen erhoben. Zudem wurden die Stromgestehungskosten für grosse PV-Anlagen pro Anlagentyp abgeschätzt

    Combined biological and chemical assessment of estrogenic activities in wastewater treatment plant effluents

    Get PDF
    Five wastewater treatment plant effluents were analyzed for known endocrine disrupters and estrogenicity. Estrogenicity was determined by using the yeast estrogen screen (YES) and by measuring the blood plasma vitellogenin (VTG) concentrations in exposed male rainbow trout (Oncorhynchus mykiss). While all wastewater treatment plant effluents contained measurable concentrations of estrogens and gave a positive response with the YES, only at two sites did the male fish have significantly increased VTG blood plasma concentrations after the exposure, compared to pre-exposure concentrations. Estrone (E1) concentrations ranged up to 51ngL−1, estradiol (E2) up to 6ngL−1, and ethinylestradiol (EE2) up to 2ngL−1 in the 90samples analyzed. Alkylphenols, alkylphenolmonoethoxylates and alkylphenoldiethoxylates, even though found at µgL−1 concentrations in effluents from wastewater treatment plants with a significant industrial content, did not contribute much to the overall estrogenicity of the samples taken due to their low relative potency. Expected estrogenicities were calculated from the chemical data for each sample by using the principle of concentration additivity and relative potencies of the various chemicals as determined with the yeast estrogen screen. Measured and calculated estradiol equivalents gave the same order of magnitude and correlated rather well (R 2=0.6

    Interface Modification for Energy Levels Alignment and Charge Extraction in CsPbI3_3 Perovskite Solar Cells

    Full text link
    In perovskite solar cells (PSCs) energy levels alignment and charge extraction at the interfaces are the essential factors directly affecting the device performance. In this work, we present a modified interface between all-inorganic CsPbI3_3 perovskite and its hole selective contact (Spiro-OMeTAD), realized by a dipole molecule trioctylphosphine oxide (TOPO), to align the energy levels. On a passivated perovskite film, by n-Octyl ammonium Iodide (OAI), we created an upward surface band-bending at the interface by TOPO treatment. This improved interface by the dipole molecule induces a better energy level alignment and enhances the charge extraction of holes from the perovskite layer to the hole transport material. Consequently, a Voc of 1.2 V and high-power conversion efficiency (PCE) of over 19% were achieved for inorganic CsPbI3_3 perovskite solar cells. Further, to demonstrate the effect of the TOPO dipole molecule, we present a layer-by-layer charge extraction study by transient surface photovoltage technique (trSPV) accomplished by charge transport simulation.Comment: 20 pages, 4 Figure

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore