226 research outputs found

    Results to be expected from light scattering dust analyzer during a rendezvous mission

    Get PDF
    The light scattering principle for particle detection is customary for the measurement of aerosols. Light scattering techniques can be applied to mixtures of particles (nephelometers) and to single particles as well. Measuring particle mixtures simplify detection because of the higher intensity level, however, information concerning the individual particle is lost. To provide well defined conditions over the whole rendezvous period, i.e., constant illumination beam and unchangeable scattering angle, the use of an artificial light source (instead of the sun) and a scattering volume located within the S/C is desirable. Considering this and the relatively low particle densities to be expected, the measurement of particle mixtures must be excluded

    Barriers along the Digital Social Innovation Process: A Structured Literature Review

    Get PDF
    Digital social innovation (DSI) is an emerging phenomenon drawing knowledge from digital innovation (DI) and social innovation (SI), offering opportunities to contribute to societal change by leveraging the potential of digital technologies. Although DSI has evoked increasing interest, research and practice are far from realising its full potential as many barriers arise along the DSI process. Thus, holistic insights into DSI process and its barriers are essential. Therefore, we identify barriers along the DSI process through a structured literature review considering DI, SI, and DSI literature. As a result, we identified 28 barriers and classified them into the DSI barrier framework. The DSI barrier framework builds on the DI framework of Kohli and Melville (2019) and extends it by including the societal environment. We thus shed light on the DSI process and provide holistic insights into the barriers along the DSI process

    Cervical masses in dogs and cats 1. Investigation and management

    Get PDF
    Abnormalities in the cervical region can be challenging to investigate and manage; however, the area is a common location for disease processes in dogs and cats. The anatomy of this region can make investigations and treatment difficult and a thorough understanding of this is essential before embarking on management and treatment of conditions in this location. Due to the various anatomical structures in the cervical area, there is often a long potential differential diagnoses list for mass lesions in this region. It is important to perform a thorough and logical investigative process in order to manage these masses appropriately. This article discusses investigation and management of cervical masses, while a second article, to be published in a subsequent issue of In Practice, will focus on differential diagnoses

    Anti-Sclerostin Antibody Treatment in a Rat Model of Progressive Renal Osteodystrophy

    Get PDF
    Chronic Kidney Disease (CKD) is associated with abnormalities in bone quantity and quality leading to increased fractures. Recent studies suggest abnormalities of Wnt signaling in animal models of CKD and elevated sclerostin levels in patients with CKD. The goal of this study was to evaluate the effectiveness of anti-sclerostin antibody treatment in an animal model of progressive CKD with low and high parathyroid hormone (PTH) levels. Cy/+ male rats (CKD) were treated without or with calcium in the drinking water at 25 weeks of age to stratify the animals into high PTH and low PTH groups, respectively, by 30 weeks. Animals were then treated with anti-sclerostin antibody at 100 mg/kg IV weekly for 5 doses, a single 20 ug/kg subcutaneous dose of zoledronic acid, or no treatment and sacrificed at 35 weeks. As a positive control, the efficacy of anti-sclerostin antibody treatment was also evaluated in normal littermates. The results demonstrated that the CKD animals with high PTH had lower calcium, higher phosphorus, and lower FGF23 compared to the CKD animals with low PTH. Treatment with anti-sclerostin Ab had no effect on any of the biochemistries, while zoledronic acid lowered dkk-1 levels. The anti-sclerostin antibody increased trabecular BV/TV., trabecular mineralization surface, in animals with low, but not high, PTH. Neither anti-sclerostin antibody nor zoledronic acid improved biomechanical properties in the animals. Cortical porosity was severe in high PTH animals and unaffected by either treatment. In contrast, in normal animals treated with anti-sclerostin antibody, there was an improvement in bone volume, cortical geometry, and biomechanical properties. In summary, this is the first study to test the efficacy of anti-sclerostin Ab treatment on animals with advanced CKD. We found efficacy in improving bone properties only when the PTH levels were low.NIH AR 058005 and Novartis

    Anharmonic collective excitation in a solvable model

    Get PDF
    We apply the time-dependent variational principle, the nuclear field theory, and the boson expansion method to the Lipkin model to discuss anharmonicities of collective vibrational excitations. It is shown that all of these approaches lead to the same anharmonicity to leading order in the number of particles. Comparison with the exact solution of the Lipkin model shows that these theories reproduce it quite well.Comment: RevTex, 18 pages, 4 postscript figure

    Everolimus restrains the IL-17A-dependent osteoclast-like transdifferentiation of dendritic cells in multiple myeloma.

    Get PDF
    Interleukin-17A (IL-17A) promotes the osteoclast (OC)-like differentiation of dendritic cells (DCs) in multiple myeloma (MM), and contributes to the pathogenesis of myeloma bone disease (MBD). In our study, EVR significantly abrogated the in vitro OC-like activity of DCs from 12 MM patients. Exploring the EVR effects, we found that the inhibition of the osteo-erosive activity of OC-DCs was mostly due to the blockade of signals driven by the IL-17A receptor toward CEBPbeta/MAFB axis Therefore, MM patients with MBD would probably benefit from mTOR inhibition

    PTH Receptor Signaling in Osteocytes Governs Periosteal Bone Formation and Intracortical Remodeling

    Get PDF
    The periosteal and endocortical surfaces of cortical bone dictate the geometry and overall mechanical properties of bone. Yet the cellular and molecular mechanisms that regulate activity on these surfaces are far from being understood. Parathyroid hormone (PTH) has profound effects in cortical bone, stimulating periosteal expansion and at the same time accelerating intracortical bone remodeling. We report herein that transgenic mice expressing a constitutive active PTH receptor in osteocytes (DMP1-caPTHR1 mice) exhibit increased cortical bone area and an elevated rate of periosteal and endocortical bone formation. In addition, DMP1-caPTHR1 mice display a marked increase in intracortical remodeling and cortical porosity. Crossing DMP1-caPTHR1 mice with mice lacking the Wnt coreceptor, LDL-related receptor 5 (LRP5), or with mice overexpressing the Wnt antagonist Sost in osteocytes (DMP1-Sost mice) reduced or abolished, respectively, the increased cortical bone area, periosteal bone formation rate, and expression of osteoblast markers and Wnt target genes exhibited by the DMP1-caPTHR1 mice. In addition, DMP1-caPTHR1 lacking LRP5 or double transgenic DMP1-caPTHR1;DMP1-Sost mice exhibit exacerbated intracortical remodeling and increased osteoclast numbers, and markedly decreased expression of the RANK decoy receptor osteoprotegerin. Thus, whereas Sost downregulation and the consequent Wnt activation is required for the stimulatory effect of PTH receptor signaling on periosteal bone formation, the Wnt-independent increase in osteoclastogenesis induced by PTH receptor activation in osteocytes overrides the effect on Sost. These findings demonstrate that PTH receptor signaling influences cortical bone through actions on osteocytes and defines the role of Wnt signaling in PTH receptor action. © 2011 American Society for Bone and Mineral Research

    Cathepsin K in lymphangioleiomyomatosis: LAM cell-fibroblast Interactions enhance protease activity by extracellular acidification

    Get PDF
    Lymphangioleiomyomatosis (LAM) is a rare disease in which clonal ‘LAM’ cells infiltrate the lungs and lymphatics. In association with recruited fibroblasts, LAM cells form nodules adjacent to lung cysts. It is assumed LAM nodule derived proteases lead to cyst formation although, this is uncertain. We profiled protease gene expression in whole lung tissue and observed cathepsin K was 40 fold over-expressed in LAM compared with control lungs (p≤0.0001). Immunohistochemistry confirmed cathepsin K protein in LAM nodules but not control lungs. Cathepsin K gene expression, protein and protease activity was detected in LAM associated fibroblasts but not the LAM cell line 621-101. In lung nodules, cathepsin K immune reactivity was predominantly co-localised with LAM associated fibroblasts. In vitro, extra-cellular cathepsin K activity was minimal at pH 7.5 but significantly enhanced in fibroblast cultures at pH 7 and 6. 621-101 cells reduced extracellular pH by 0.5 units over 24 hours. Acidification was dependent upon 621-101 cell mTOR activity and net hydrogen ion transporters, particularly sodium/bicarbonate co-transporters and carbonic anhydrases which were also expressed in LAM lung tissue. In LAM cell/fibroblast co-cultures, acidification paralleled cathepsin K activity and both were inhibited by sodium bicarbonate co-transporter (p≤0.0001) and carbonic anhydrase inhibitors (p=0.0021). Our findings suggest cathepsin K activity is dependent on LAM cell/fibroblast interactions and inhibitors of extracellular acidification may be potential therapies for LAM

    Rational design of a fusion partner for membrane protein expression in E. coli

    Get PDF
    We have designed a novel protein fusion partner (P8CBD) to utilize the co-translational SRP pathway in order to target heterologous proteins to the E. coli inner membrane. SRP-dependence was demonstrated by analyzing the membrane translocation of P8CBD-PhoA fusion proteins in wt and SRP-ffh77 mutant cells. We also demonstrate that the P8CBD N-terminal fusion partner promotes over-expression of a Thermotoga maritima polytopic membrane protein by replacement of the native signal anchor sequence. Furthermore, the yeast mitochondrial inner membrane protein Oxa1p was expressed as a P8CBD fusion and shown to function within the E. coli inner membrane. In this example, the mitochondrial targeting peptide was replaced by P8CBD. Several practical features were incorporated into the P8CBD expression system to aid in protein detection, purification, and optional in vitro processing by enterokinase. The basis of membrane protein over-expression toxicity is discussed and solutions to this problem are presented. We anticipate that this optimized expression system will aid in the isolation and study of various recombinant forms of membrane-associated protein
    corecore