318 research outputs found

    Core-coupled states and split proton-neutron quasi-particle multiplets in 122-126Ag

    Get PDF
    Neutron-rich silver isotopes were populated in the fragmentation of a 136Xe beam and the relativistic fission of 238U. The fragments were mass analyzed with the GSI Fragment separator and subsequently implanted into a passive stopper. Isomeric transitions were detected by 105 HPGe detectors. Eight isomeric states were observed in 122-126Ag nuclei. The level schemes of 122,123,125Ag were revised and extended with isomeric transitions being observed for the first time. The excited states in the odd-mass silver isotopes are interpreted as core-coupled states. The isomeric states in the even-mass silver isotopes are discussed in the framework of the proton-neutron split multiplets. The results of shell-model calculations, performed for the most neutron-rich silver nuclei are compared to the experimental data

    Lifetime measurements of short-lived excited states, and shape changes in As 69 and Ge 66 nuclei

    Get PDF
    Background: The nuclear shape is a macroscopic feature of an atomic nucleus that is sensitive to the underlying nuclear structure in terms of collectivity and the interaction between nucleons. Therefore, the evolution of nuclear shapes has attracted many theoretical and experimental nuclear structure studies. The structure of the A≈70, N≈Z nuclei, lying far from the stability line, is interesting because a particularly strong proton-neutron correlation may occur here due to the occupation of the same orbits by nucleons of both types. In this region, different particle configurations drive a nucleus towards various deformed shapes: prolate, oblate, octupole, or nonaxial. These nuclear shapes change rapidly with nucleon number and also with angular momentum. This is reflected by a presence of different structures (bands) of excited states which exhibit a broad range of lifetimes. Purpose: The aim of this paper is to determine lifetimes of some high-spin excited states in As69 and Ge66 nuclei to examine the shape evolution in these neutron-deficient nuclei. Methods: Lifetimes of high-spin states in As69 and Ge66 have been measured by using the Doppler-shift attenuation technique with the GASP and recoil filter detector setup at the Laboratori Nazionali di Legnaro. The nuclei of interest were produced in the S32(95MeV)+0.8mg/cm2 Ca40 fusion-evaporation reaction. The strongest reaction channels 3p and α2p led to the As69 and Ge66 final nuclei, respectively. Using Îł-Îł-recoil coincidences we were able to determine very short lifetimes (in the femtosecond range) in the residual nuclei of interest. Results: In As69, the extracted lifetimes are τ=72 (-32, +45) fs for the 33/2+ state at 7897 keV and τ<85 fs for the 37/2+ state at 9820 keV. For the Ge66 case, the lifetime of the 11- state at 7130 keV is τ=122(±41) fs. Lifetimes in As69 and Ge66 reported in this paper have been measured for the first time in the present experiment. Conclusions: The results are discussed in the terms of deformation and shape evolution in As69 and Ge66. The quadrupole moments deduced from the measured lifetimes were compared with the cranked Woods-Saxon-Strutinsky calculations by means of the total Routhian surface method. It turns out that Band 3 in As69 shows an oblate-prolate shape transition, and above spin 33/2+ it corresponds to a prolate collective structure with ÎČ2≈0.27 and γ≈20. In turn, in Ge66 the negative-parity band built on the 7- state at 4205 keV corresponds to a triaxial shape with ÎČ2=0.33 and Îł=31. Analysis of the transitional quadrupole moments derived from the experimental and theoretical ones points to a significant change of deformation in the As69 and Ge66 nuclei with increasing rotational frequency

    Restored in vivo-like membrane lipidomics positively influence in vitro features of cultured mesenchymal stromal/stem cells derived from human placenta

    Get PDF
    BACKGROUND: The study of lipid metabolism in stem cell physiology has recently raised great interest. The role of lipids goes beyond the mere structural involvement in assembling extra- and intra-cellular compartments. Nevertheless, we are still far from understanding the impact of membrane lipidomics in stemness maintenance and differentiation patterns. In the last years, it has been reported how in vitro cell culturing can modify membrane lipidomics. The aim of the present work was to study the membrane fatty acid profile of mesenchymal stromal cells (MSCs) derived from human fetal membranes (hFM-MSCs) and to correlate this to specific biological properties by using chemically defined tailored lipid supplements (RefeedÂź). METHODS: Freshly isolated hFM-MSCs were characterized for their membrane fatty acid composition. hFM-MSCs were cultivated in vitro following a classical protocol and their membrane fatty acid profile at different passages was compared to the profile in vivo. A tailored RefeedÂź lipid supplement was developed with the aim of reducing the differences created by the in vitro cultivation and was tested on cultured hFM-MSCs. Cell morphology, viability, proliferation, angiogenic differentiation, and immunomodulatory properties after in vitro exposure to the tailored RefeedÂź lipid supplement were investigated. RESULTS: A significant modification of hFM-MSC membrane fatty acid composition occurred during in vitro culture. Using a tailored lipid supplement, the fatty acid composition of cultured cells remained more similar to their in vivo counterparts, being characterized by a higher polyunsaturated and omega-6 fatty acid content. These changes in membrane composition had no effect on cell morphology and viability, but were linked with increased cell proliferation rate, angiogenic differentiation, and immunomodulatory properties. In particular, RefeedÂź-supplemented hFM-MSCs showed greater ability to express fully functional cell membrane molecules. CONCLUSIONS: Culturing hFM-MSCs alters their fatty acid composition. A tailored lipid supplement is able to improve in vitro hFM-MSC functional properties by recreating a membrane environment more similar to the physiological counterpart. This approach should be considered in cell therapy applications in order to maintain a higher cell quality during in vitro passaging and to influence the outcome of cell-based therapeutic approaches when cells are administered to patients

    Superdeformed and Triaxial States in Ca 42

    Get PDF
    Shape parameters of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in ^{42}Ca were determined from E2 matrix elements measured in the first low-energy Coulomb excitation experiment performed with AGATA. The picture of two coexisting structures is well reproduced by new state-of-the-art large-scale shell model and beyond-mean-field calculations. Experimental evidence for superdeformation of the band built on 0_{2}^{+} has been obtained and the role of triaxiality in the A∌40 mass region is discussed. Furthermore, the potential of Coulomb excitation as a tool to study superdeformation has been demonstrated for the first time

    Testing ab initio nuclear structure in neutron-rich nuclei: Lifetime measurements of second 2+ state in 16C and 20O

    Get PDF
    To test the predictive power of ab initio nuclear structure theory, the lifetime of the second 2+ state in neutron-rich 20O,τ(2+2)=150+80−30fs, and an estimate for the lifetime of the second 2+ state in 16C have been obtained for the first time. The results were achieved via a novel Monte Carlo technique that allowed us to measure nuclear state lifetimes in the tens-to-hundreds of femtoseconds range by analyzing the Doppler-shifted Îł-transition line shapes of products of low-energy transfer and deep-inelastic processes in the reaction 18O(7.0MeV/u)+181Ta. The requested sensitivity could only be reached owing to the excellent performances of the Advanced Îł-Tracking Array AGATA, coupled to the PARIS scintillator array and to the VAMOS++ magnetic spectrometer. The experimental lifetimes agree with predictions of ab initio calculations using two- and three-nucleon interactions, obtained with the valence-space in-medium similarity renormalization group for 20O and with the no-core shell model for 16C. The present measurement shows the power of electromagnetic observables, determined with high-precision Îł spectroscopy, to assess the quality of first-principles nuclear structure calculations, complementing common benchmarks based on nuclear energies. The proposed experimental approach will be essential for short lifetime measurements in unexplored regions of the nuclear chart, including r-process nuclei, when intense beams, produced by Isotope Separation On-Line (ISOL) techniques, become available

    Quadrupole collectivity in Ca 42 from low-energy Coulomb excitation with AGATA

    Get PDF
    A Coulomb-excitation experiment to study electromagnetic properties of Ca42 was performed using a 170-MeV calcium beam from the TANDEM XPU facility at INFN Laboratori Nazionali di Legnaro. Îł rays from excited states in Ca42 were measured with the AGATA spectrometer. The magnitudes and relative signs of ten E2 matrix elements coupling six low-lying states in Ca42, including the diagonal E2 matrix elements of 21+ and 22+ states, were determined using the least-squares code gosia. The obtained set of reduced E2 matrix elements was analyzed using the quadrupole sum rule method and yielded overall quadrupole deformation for 01,2+ and 21,2+ states, as well as triaxiality for 01,2+ states, establishing the coexistence of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in Ca42. The experimental results were compared with the state-of-the-art large-scale shell-model and beyond-mean-field calculations, which reproduce well the general picture of shape coexistence in Ca42

    HGF/SF and its receptor c-MET play a minor role in the dissemination of human B-lymphoma cells in SCID mice

    Get PDF
    The MET protooncogene, c-MET, encodes a cell surface tyrosine kinase receptor. The ligand for c-MET is hepatocyte growth factor (HGF), also known as scatter factor (SF), which is known to affect proliferation and motility of primarily epithelial cells. Recently, HGF/SF was also shown to affect haemopoiesis. Studies with epithelial and transfected NIH3T3 cells indicated that the HGF/SF–c-MET interaction promotes invasion in vitro and in vivo. We previously demonstrated that HGF/SF induces adhesion of c-MET-positive B-lymphoma cells to extracellular matrix molecules, and promoted migration and invasion in in vitro assays. Here, the effect of HGF/SF on tumorigenicity of c-MET-positive and c-MET-negative human B-lymphoma cell lines was studied in C.B-17 scid/scid (severe combined immune deficient) mice. Intravenously (i.v.) injected c-MET-positive (BJAB) as well as c-MET-negative (Daudi and Ramos cells) B-lymphoma cells formed tumours in SCID mice. The B-lymphoma cells invaded different organs, such as liver, kidney, lymph nodes, lung, gonads and the central nervous system. We assessed the effect of human HGF/SF on the dissemination of the B-lymphoma cells and found that administration of 5 ÎŒg HGF/SF to mice, injected (i.v.) with c-MET-positive lymphoma cells, significantly (P = 0.018) increased the number of metastases in lung, liver and lymph nodes. In addition, HGF/SF did not significantly influence dissemination of c-MET-negative lymphoma cells (P = 0.350 with Daudi cells and P = 0.353 with Ramos cells). Thus the effect of administration of HGF/SF on invasion of lymphoma cells is not an indirect one, e.g. via an effect on endothelial cells. Finally, we investigated the effect of HGF/SF on dissemination of c-MET-transduced Ramos cells. In response to HGF/SF, c-MET-transduced Ramos cells showed an increased migration through Matrigel in Boyden chambers compared to wild-type and control-transduced Ramos cells. The dissemination pattern of c-MET-transduced cells did not differ from control cells in in vivo experiments using SCID mice. Also no effect of HGF/SF administration could be documented, in contrast to the in vitro experiments. From our experiments can be concluded that the HGF/SF–c-MET interaction only plays a minor role in the dissemination of human B-lymphoma cells. © 1999 Cancer Research Campaig
    • 

    corecore