439 research outputs found
B-Mesons on the Transverse Lattice
We present results from a first study of -mesons that is based on a
transverse lattice formulation of light-front QCD. The shape of the Isgur-Wise
form factor is in very good agreement with experimental data. However, the
calculations yield rather large values for and compared
to contemporary calculations based on other techniques.Comment: invited talk given at CSSM workshop on `Lattice Hadron Physics',
Cairns, July 2001 and at ECT* workshop on `Light-cone Physics: Particles and
String', Trento, Sept. 200
How to make large, void free dust clusters in dusty plasma under microgravity
Collections of micrometer sized solid particles immersed in plamsa are used
to mimic many systems from solid state and fluid physics, due to their strong
electrostatic interaction, their large inertia, and the fact that they are
large enough to be visualized with ordinary optics. On Earth, gravity restricts
the so called dusty plasma systems to thin, two-dimensional layers, unless
special experimental geometries are used, involving heated or cooled electrons,
and/or the use of dielectric materials.In micro-gravity experiments, the
formation of a dust-free void breaks the isotropy of three-dimensional dusty
plasma systems. In order to do real three-dimensional experiments, this void
has somehow to be closed. In this paper, we use a fully self-consistent fluid
model to study the closure of a void in a micro-gravity experiment, by lowering
the driving potential. The analysis goes beyond the simple description of the
virtual void, which describes the formation of a void without taking the dust
into account. We show that self-organization plays an important role in void
formation and void closure, which also allows a reversed scheme, where a
discharge is run at low driving potentials and small batches of dust are added.
No hysteresis is found this way. Finally, we compare our results to recent
experiments and find good agreement,but only when we do not take
charge-exchange collisions into account
Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution
The standard approach to analyzing 16S tag sequence data, which relies on
clustering reads by sequence similarity into Operational Taxonomic Units
(OTUs), underexploits the accuracy of modern sequencing technology. We present
a clustering-free approach to multi-sample Illumina datasets that can identify
independent bacterial subpopulations regardless of the similarity of their 16S
tag sequences. Using published data from a longitudinal time-series study of
human tongue microbiota, we are able to resolve within standard 97% similarity
OTUs up to 20 distinct subpopulations, all ecologically distinct but with 16S
tags differing by as little as 1 nucleotide (99.2% similarity). A comparative
analysis of oral communities of two cohabiting individuals reveals that most
such subpopulations are shared between the two communities at 100% sequence
identity, and that dynamical similarity between subpopulations in one host is
strongly predictive of dynamical similarity between the same subpopulations in
the other host. Our method can also be applied to samples collected in
cross-sectional studies and can be used with the 454 sequencing platform. We
discuss how the sub-OTU resolution of our approach can provide new insight into
factors shaping community assembly.Comment: Updated to match the published version. 12 pages, 5 figures +
supplement. Significantly revised for clarity, references added, results not
change
The microbiome of the ant-built home : the microbial communities of a tropical arboreal ant and its nest
Microbial life is ubiquitous, yet we are just beginning to understand how microbial communities are assembled. We test whether relationships between ant microbiomes and their environments resemble patterns identified in the human home microbiome. We examine the microbial communities and chemical composition of ants, their waste, their nest, and the surrounding soil. We predicted that the microbiome of the canopy ant, Azteca trigona, like that of humans, represents a distinct, relatively invariant, community compared to the soil community. Because Azteca build aboveground nests constructed from ant exudates mixed with chewed plant fibers, we predicted that nest-associated microorganisms should reflect their ants, not the surrounding environment. The ant microbiome was distinct from the soil, but contrary to initial predictions, ant microbiomes varied dramatically across colonies. This variation was largely driven by the relative abundance of Lactobacillus, a genus frequently associated with hymenopteran diets. Despite the origin of nests and their means of construction, nest-associated microorganisms were most similar to the surrounding soil. The microbiota of Azteca ants is thus distinct, but dimorphic across colonies, for reasons likely due to inter-colony differences in diet; microbiotas of the nests however mirror the surrounding soil community, similar to patterns of human home microbiota.This work was supported by the National Science Foundation (EF—1065844) to Michael Kaspari, the National Science Foundation Graduate Research Fellowship (2014170874) to Jane Lucas, Smithsonian Tropical Research Institute Short-Term Fellowship to Jane Lucas, and University of Oklahoma Biology Department Funds.Ye
Pink‐ and orange‐pigmented Planctomycetes produce saproxanthin‐type carotenoids including a rare C45 carotenoid
Planctomycetes, are ubiquitous and environmentally important Gram-negative aquatic bacteria with key roles in global carbon and nitrogen cycles. Many planctomycetal species have a pink or orange colour and have been suggested to produce carotenoids. Potential applications as food colorants or anti-oxidants have been proposed. Hitherto, the planctomycetal metabolism is largely unexplored and the strain pigmentation has not been identified. For a holistic view on the complex planctomycetal physiology we analyzed carotenoid profiles of the pink-pigmented strain Rhodopirellula rubra LF2T and of the orange strain Rubinisphaera brasiliensis Gr7. During LC-MS/MS analysis of culture extracts we were able to identify three saproxanthin-type carotenoids including a rare C45 carotenoid. These compounds, saproxanthin, dehydroflexixanthin and 2’-isopentenyldehydrosaproxanthin, derive from the common carotenoid precursor lycopene and are characterized by related end groups, namely a 3-hydroxylated β-carotene-like cyclohexene ring as one end group and simple hydration on the other end of the molecule. Based on the observed molecule structure we present putative pathways for their biosynthesis. Results support Planctomycetes as a promising, yet mostly untapped source of carotenoids
Recommended from our members
Gut microbiota modulation accounts for the neuroprotective properties of anthocyanins
High-fat (HF) diets are thought to disrupt the profile of the gut microbiota in a manner that may contribute to the neuroinflammation and neurobehavioral changes observed in obesity. Accordingly, we hypothesize that by preventing HF-diet induced dysbiosis it is possible to prevent neuroinflammation and the consequent neurological disorders. Anthocyanins are flavonoids found in berries that exhibit anti-neuroinflammatory properties in the context of obesity. Here, we demonstrate that the blackberry anthocyanin-rich extract (BE) can modulate gut microbiota composition and counteract some of the features of HF-diet induced dysbiosis. In addition, we show that the modifications in gut microbial environment are partially linked with the anti-neuroinflammatory properties of BE. Through fecal metabolome analysis, we unravel the mechanism by which BE participates in the bilateral communication between the gut and the brain. BE alters host tryptophan metabolism, increasing the production of the neuroprotective metabolite kynurenic acid. These findings strongly suggest that dietary manipulation of the gut microbiota with anthocyanins can attenuate the neurologic complications of obesity, thus expanding the classification of psychobiotics to anthocyanins
A distinct bacterial dysbiosis associated skin inflammation in ovine footrot
Ovine footrot is a highly prevalent bacterial disease caused by Dichelobacter nodosus and characterised by the separation of the hoof horn from the underlying skin. The role of innate immune molecules and other bacterial communities in the development of footrot lesions remains unclear. This study shows a significant association between the high expression of IL1β and high D. nodosus load in footrot samples. Investigation of the microbial population identified distinct bacterial populations in the different disease stages and also depending on the level of inflammation. Treponema (34%), Mycoplasma (29%) and Porphyromonas (15%) were the most abundant genera associated with high levels of inflammation in footrot. In contrast, Acinetobacter (25%), Corynebacteria (17%) and Flavobacterium (17%) were the most abundant genera associated with high levels of inflammation in healthy feet. This demonstrates for the first time there is a distinct microbial community associated with footrot and high cytokine expression
Evaluation and optimization of PCR primers for selective and quantitative detection of marine ANME subclusters involved in sulfate-dependent anaerobic methane oxidation
Since the discovery that anaerobic methanotrophic archaea (ANME) are involved in the anaerobic oxidation of methane coupled to sulfate reduction in marine sediments, different primers and probes specifically targeting the 16S rRNA gene of these archaea have been developed. Microbial investigation of the different ANME subtypes (ANME-1; ANME-2a, b, and c; and ANME-3) was mainly done in sediments where specific subtypes of ANME were highly enriched and methanogenic cell numbers were low. In different sediments with higher archaeal diversity and abundance, it is important that primers and probes targeting different ANME subtypes are very specific and do not detect other ANME subtypes or methanogens that are also present. In this study, primers and probes that were regularly used in AOM studies were tested in silico on coverage and specificity. Most of the previously developed primers and probes were not specific for the ANME subtypes, thereby not reflecting the actual ANME population in complex samples. Selected primers that showed good coverage and high specificity for the subclades ANME-1, ANME-2a/b, and ANME-2c were thoroughly validated using quantitative polymerase chain reaction (qPCR). From these qPCR tests, only certain combinations seemed suitable for selective amplification. After optimization of these primer sets, we obtained valid primer combinations for the selective detection and quantification of ANME-1, ANME-2a/b, and ANME-2c in samples where different ANME subtypes and possibly methanogens could be present. As a result of this work, we propose a standard workflow to facilitate selection of suitable primers for qPCR experiments on novel environmental samples.This research is supported by the Dutch Technology Foundation STW (project 10711), which is part of the Netherlands Organization for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs. Research of AJMS is supported by ERC grant (project 323009). Research of PHATand AJMS is supported by the SIAM Gravitation grant (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation (NWO).info:eu-repo/semantics/publishedVersio
Climatic impacts on the bacterial community profiles of cork oak soils
Climate changes comprise increasing global temperature and water cycle deregulation (precipitation storms and long dry seasons). Many affected ecosystems are located within the Mediterranean basin, where cork oak (Quercus suber L.) is one of the most important forest ecosystems. Despite cork oak tolerance to drought, the decrease of water availability and increase of temperature is causing a serious decline of cork oak populations. In the present work, the bacterial community of cork oak soils was assessed by metabarcoding using Illumina Miseq. Soils from seven independent cork oak forests were collected along a climate gradient. In all forest soils, Proteobacteria and Actinobacteria were the richest and more abundant bacteria. Acidobacteria also presented a high relative abundance, and Chloroflexi was a rich phylum. The soil bacterial community diversity and composition was strongly affected by the climatic region where cork oak resides and specific bacterial taxa were differently affected by precipitation and temperature. Accordingly, cork oak bacterial communities clustered into three distinct groups, related with humid, sub-humid and arid/semi-arid climates. Driest and warmer forests presented more diverse bacterial communities than humid and coolest forests. However, driest climates presented more homogenous bacterial communities among forests than humid climates. Climate (mainly precipitation) revealed to be the strongest driver leading to significant variations of bacterial community profiles. The most impacted bacterial taxa by climatic variables were Proteobacteria, in particular Gammaproteobacteria and Deltaproteobacteria, Chloroflexi, and Firmicutes. Humid forests presented mainly Acidobacteria as good indicators of climate, whereas Actinobacteria members were better indicators for arid forests (mainly Gaiellales and Frankiales). Some indicator species for different climate conditions were members of the bacterial core of cork oak stands (7% of the total bacterial community). Taken together, differentThis work was supported by FEDER through the Operational Competitiveness Program (COMPETE) and by Portuguese national funds through the Foundation for Science and Technology (FCT) within the scope of the project POCI-01-0145-FEDER-028635; FCT/MCTES/PIDDAC (Portugal) under the project (PEst-OE/BIA/UI4046/2014; UID/MULTI/04046/2013) and PhD grant to F.R. (SFRH/BD/86519/2012)
Maternal Risk of Breeding Failure Remained Low throughout the Demographic Transitions in Fertility and Age at First Reproduction in Finland
Radical declines in fertility and postponement of first reproduction during the recent human demographic transitions have posed a challenge to interpreting human behaviour in evolutionary terms. This challenge has stemmed from insufficient evolutionary insight into individual reproductive decision-making and the rarity of datasets recording individual long-term reproductive success throughout the transitions. We use such data from about 2,000 Finnish mothers (first births: 1880s to 1970s) to show that changes in the maternal risk of breeding failure (no offspring raised to adulthood) underlay shifts in both fertility and first reproduction. With steady improvements in offspring survival, the expected fertility required to satisfy a low risk of breeding failure became lower and observed maternal fertility subsequently declined through an earlier age at last reproduction. Postponement of the age at first reproduction began when this risk approximated zero–even for mothers starting reproduction late. Interestingly, despite vastly differing fertility rates at different stages of the transitions, the number of offspring successfully raised to breeding per mother remained relatively constant over the period. Our results stress the importance of assessing the long-term success of reproductive strategies by including measures of offspring quality and suggest that avoidance of breeding failure may explain several key features of recent life-history shifts in industrialized societies
- …