179 research outputs found
Transepithelial migration of neutrophils into the lung requires TREM-1
Acute respiratory infections are responsible for more than 4 million deaths each year. Neutrophils play an essential role in the innate immune response to lung infection. These cells have an armamentarium of pattern recognition molecules and antimicrobial agents that identify and eliminate pathogens. In the setting of infection, neutrophil triggering receptor expressed on myeloid cells 1 (TREM-1) amplifies inflammatory signaling. Here we demonstrate for the first time that TREM-1 also plays an important role in transepithelial migration of neutrophils into the airspace. We developed a TREM-1/3–deficient mouse model of pneumonia and found that absence of TREM-1/3 markedly increased mortality following Pseudomonas aeruginosa challenge. Unexpectedly, TREM-1/3 deficiency resulted in increased local and systemic cytokine production. TREM-1/3–deficient neutrophils demonstrated intact bacterial killing, phagocytosis, and chemotaxis; however, histologic examination of TREM-1/3–deficient lungs revealed decreased neutrophil infiltration of the airways. TREM-1/3–deficient neutrophils effectively migrated across primary endothelial cell monolayers but failed to migrate across primary airway epithelia grown at the air-liquid interface. These data define a new function for TREM-1 in neutrophil migration across airway epithelial cells and suggest that it amplifies inflammation through targeted neutrophil migration into the lung
TREM-2 (triggering receptor expressed on myeloid cells 2) is a phagocytic receptor for bacteria
Phagocytosis, which is essential for the immune response to pathogens, is initiated by specific interactions between pathogens and cell surface receptors expressed by phagocytes. This study identifies triggering receptor expressed on myeloid cells 2 (TREM-2) and its signaling counterpart DAP12 as a molecular complex that promotes phagocytosis of bacteria. Expression of TREM-2–DAP12 enables nonphagocytic Chinese hamster ovary cells to internalize bacteria. This function depends on actin cytoskeleton dynamics and the activity of the small guanosine triphosphatases Rac and Cdc42. Internalization also requires src kinase activity and tyrosine phosphorylation. In bone marrow–derived macrophages, phagocytosis is decreased in the absence of DAP12 and can be restored by expression of TREM-2–DAP12. Depletion of TREM-2 inhibits both binding and uptake of bacteria. Finally, TREM-2–dependent phagocytosis is impaired in Syk-deficient macrophages. This study highlights a novel role for TREM-2–DAP12 in the immune response to bacterial pathogens
The triggering receptor expressed on myeloid cells (TREM) in inflammatory bowel disease pathogenesis
The Triggering Receptors Expressed on Myeloid cells (TREM) are a family of cell-surface molecules that control inflammation, bone homeostasis, neurological development and blood coagulation. TREM-1 and TREM-2, the best-characterized receptors so far, play divergent roles in several infectious diseases. In the intestine, TREM-1 is highly expressed by macrophages, contributing to inflammatory bowel disease (IBD) pathogenesis. Contrary to current understanding, TREM-2 also promotes inflammation in IBD by fueling dendritic cell functions. This review will focus specifically on recent insights into the role of TREM proteins in IBD development, and discuss opportunities for novel treatment approaches
TREM-1 expression on neutrophils and monocytes of septic patients: relation to the underlying infection and the implicated pathogen
<p>Abstract</p> <p>Background</p> <p>Current knowledge on the exact ligand causing expression of TREM-1 on neutrophils and monocytes is limited. The present study aimed at the role of underlying infection and of the causative pathogen in the expression of TREM-1 in sepsis.</p> <p>Methods</p> <p>Peripheral venous blood was sampled from 125 patients with sepsis and 88 with severe sepsis/septic shock. The causative pathogen was isolated in 91 patients. Patients were suffering from acute pyelonephritis, community-acquired pneumonia (CAP), intra-abdominal infections (IAIs), primary bacteremia and ventilator-associated pneumonia or hospital-acquired pneumonia (VAP/HAP). Blood monocytes and neutrophils were isolated. Flow cytometry was used to estimate the TREM-1 expression from septic patients.</p> <p>Results</p> <p>Within patients bearing intrabdominal infections, expression of TREM-1 was significantly lower on neutrophils and on monocytes at severe sepsis/shock than at sepsis. That was also the case for severe sepsis/shock developed in the field of VAP/HAP. Among patients who suffered infections by Gram-negative community-acquired pathogens or among patients who suffered polymicrobial infections, expression of TREM-1 on monocytes was significantly lower at the stage of severe sepsis/shock than at the stage of sepsis.</p> <p>Conclusions</p> <p>Decrease of the expression of TREM-1 on the membrane of monocytes and neutrophils upon transition from sepsis to severe sepsis/septic shock depends on the underlying type of infection and the causative pathogen.</p
Immunology and genetics of type 1 diabetes
Type 1 diabetes is one of the most well-characterized autoimmune diseases. Type 1 diabetes compromises an individual's insulin production through the autoimmune destruction of pancreatic Β-cells. Although much is understood about the mechanisms of this disease, multiple potential contributing factors are thought to play distinct parts in triggering type 1 diabetes. The immunological diagnosis of type 1 diabetes relies primarily on the detection of autoantibodies against islet antigens in the serum of type 1 diabetes mellitus patients. Genetic analyses of type 1 diabetes have linked human leukocyte antigen, specifically class II alleles, to susceptibility to disease onset. Environmental catalysts include various possible factors, such as viral infections, although the evidence linking infections with type 1 diabetes remains inconclusive. Imbalances within the immune system's system of checks and balances may promote immune activation, while undermining immune regulation. A lack of proper regulation and overactive pathogenic responses provide a framework for the development of autoimmune abnormalities. Type 1 diabetes is a predictable and potentially treatable disease that still requires much research to fully understand and pinpoint the exact triggering events leading to autoimmune activation. In silico research can aid the comprehension of the etiology of complex disease pathways, including Type I diabetes, in order to and help predict the outcome of therapeutic strategies aimed at preserving Β-cell function. Mt Sinai J Med 75:314–327, 2008. © 2008 Mount Sinai School of MedicinePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/60987/1/20052_ftp.pd
Diagnostic value of triggering receptor expressed on myeloid cells-1 and C-reactive protein for patients with lung infiltrates: an observational study
<p>Abstract</p> <p>Background</p> <p>Differential diagnosis of patients with lung infiltrates remains a challenge. Triggering receptor expressed on myeloid cells (TREM)-1 is a neutrophil and monocyte receptor up-regulated during infection. The aim of this study was to evaluate the diagnostic accuracy of TREM-1 and of C-reactive protein (CRP) from patients with lung infiltrates to discern community acquired lung infections.</p> <p>Methods</p> <p>68 patients admitted to a medical ward with acute respiratory illness were enrolled in the study. Neutrophil and monocyte TREM-1 expression were measured by flow cytometry, sTREM-1 by an enzyme immunoassay and C-reactive protein by nephelometry. Clinical pulmonary infection score was recorded.</p> <p>Results</p> <p>34 patients were diagnosed with bacterial community acquired pneumonia (group A) and 34 with non-bacterial pulmonary disease (group B). Median serum TREM-1 concentration was 102.09 pg/ml in group A and lower than 15.10 pg/ml (p < 0.0001) in group B. Mean±SE neutrophil TREM-1 expression was 4.67 ± 0.53 MFI in group A and 2.64 ± 0.25 MFI (p = 0.001) in group B. Monocyte TREM-1 expression was 4.2 ± 0.42 MFI in group A and 2.64 ± 0.35 MFI (p = 0.007) in group B and mean±SE CRP was 18.03 ± 2 mg/ml in group A and 7.1 ± 1.54 mg/ml (p < 0.001) in group B. A cut-off of 19.53 pg/ml of sTREM-1 with sensitivity 82.6% and specificity 63% to discriminate between infectious and non-infectious pulmonary infiltrates was found. sTREM-1 at admission greater than 180 pg/ml was accompanied with unfavourable outcome.</p> <p>Conclusion</p> <p>TREM-1 myeloid expression and sTREM-1 are reliable markers of bacterial infection among patients with pulmonary infiltrates; sTREM-1 is a predictor of final outcome.</p
Chicken TREM-B1, an Inhibitory Ig-Like Receptor Expressed on Chicken Thrombocytes
Triggering receptors expressed on myeloid cells (TREM) form a multigene family of immunoregulatory Ig-like receptors and play important roles in the regulation of innate and adaptive immunity. In chickens, three members of the TREM family have been identified on chromosome 26. One of them is TREM-B1 which possesses two V-set Ig-domains, an uncharged transmembrane region and a long cytoplasmic tail with one ITSM and two ITIMs indicating an inhibitory function. We generated specific monoclonal antibodies by immunizing a Balb/c mouse with a TREM-B1-FLAG transfected BWZ.36 cell line and tested the hybridoma supernatants on TREM-B1-FLAG transfected 2D8 cells. We obtained two different antibodies specific for TREM-B1, mab 7E8 (mouse IgG1) and mab 1E9 (mouse IgG2a) which were used for cell surface staining. Single and double staining of different tissues, including whole blood preparations, revealed expression on thrombocytes. Next we investigated the biochemical properties of TREM-B1 by using the specific mab 1E9 for immunoprecipitation of either lysates of surface biotinylated peripheral blood cells or stably transfected 2D8 cells. Staining with streptavidin coupled horse radish peroxidase revealed a glycosylated monomeric protein of about 50 kDa. Furthermore we used the stably transfected 2D8 cell line for analyzing the cytoplasmic tyrosine based signaling motifs. After pervanadate treatment, we detected phosphorylation of the tyrosine residues and subsequent recruitment of the tyrosine specific protein phosphatase SHP-2, indicating an inhibitory potential for TREM-B1. We also showed the inhibitory effect of TREM-B1 in chicken thrombocytes using a CD107 degranulation assay. Crosslinking of TREM-B1 on activated primary thrombocytes resulted in decreased CD107 surface expression of about 50-70%
Glucose Depletion in the Airway Surface Liquid Is Essential for Sterility of the Airways
Diabetes mellitus predisposes the host to bacterial infections. Moreover, hyperglycemia has been shown to be an independent risk factor for respiratory infections. The luminal surface of airway epithelia is covered by a thin layer of airway surface liquid (ASL) and is normally sterile despite constant exposure to bacteria. The balance between bacterial growth and killing in the airway determines the outcome of exposure to inhaled or aspirated bacteria: infection or sterility. We hypothesized that restriction of carbon sources –including glucose– in the ASL is required for sterility of the lungs. We found that airway epithelia deplete glucose from the ASL via a novel mechanism involving polarized expression of GLUT-1 and GLUT-10, intracellular glucose phosphorylation, and low relative paracellular glucose permeability in well-differentiated cultures of human airway epithelia and in segments of airway epithelia excised from human tracheas. Moreover, we found that increased glucose concentration in the ASL augments growth of P. aeruginosa in vitro and in the lungs of hyperglycemic ob/ob and db/db mice in vivo. In contrast, hyperglycemia had no effect on intrapulmonary bacterial growth of a P. aeruginosa mutant that is unable to utilize glucose as a carbon source. Our data suggest that depletion of glucose in the airway epithelial surface is a novel mechanism for innate immunity. This mechanism is important for sterility of the airways and has implications in hyperglycemia and conditions that result in disruption of the epithelial barrier in the lung
A Novel Soluble Immune-Type Receptor (SITR) in Teleost Fish: Carp SITR Is Involved in the Nitric Oxide-Mediated Response to a Protozoan Parasite
Background- The innate immune system relies upon a wide range of germ-line encoded receptors including a large number of immunoglobulin superfamily (IgSF) receptors. Different Ig-like immune receptor families have been reported in mammals, birds, amphibians and fish. Most innate immune receptors of the IgSF are type I transmembrane proteins containing one or more extracellular Ig-like domains and their regulation of effector functions is mediated intracellularly by distinct stimulatory or inhibitory pathways. Methodology/Principal Findings - Carp SITR was found in a substracted cDNA repertoire from carp macrophages, enriched for genes up-regulated in response to the protozoan parasite Trypanoplasma borreli. Carp SITR is a type I protein with two extracellular Ig domains in a unique organisation of a N-proximal V/C2 (or I-) type and a C-proximal V-type Ig domain, devoid of a transmembrane domain or any intracytoplasmic signalling motif. The carp SITR C-proximal V-type Ig domain, in particular, has a close sequence similarity and conserved structural characteristics to the mammalian CD300 molecules. By generating an anti-SITR antibody we could show that SITR protein expression was restricted to cells of the myeloid lineage. Carp SITR is abundantly expressed in macrophages and is secreted upon in vitro stimulation with the protozoan parasite T. borreli. Secretion of SITR protein during in vivo T. borreli infection suggests a role for this IgSF receptor in the host response to this protozoan parasite. Overexpression of carp SITR in mouse macrophages and knock-down of SITR protein expression in carp macrophages, using morpholino antisense technology, provided evidence for the involvement of carp SITR in the parasite-induced NO production. Conclusion/Significance - We report the structural and functional characterization of a novel soluble immune-type receptor (SITR) in a teleost fish and propose a role for carp SITR in the NO-mediated response to a protozoan parasite
- …