171 research outputs found

    Collaboration Matters: Honey Bee Health as a Transdisciplinary Model for Understanding Real-World Complexity

    Get PDF
    We develop a transdisciplinary deliberative model that moves beyond traditional scientific collaborations to include nonscientists in designing complexity-oriented research. We use the case of declining honey bee health as an exemplar of complex real-world problems requiring cross-disciplinary intervention. Honey bees are important pollinators of the fruits and vegetables we eat. In recent years, these insects have been dying at alarming rates. To prompt the reorientation of research toward the complex reality in which bees face multiple challenges, we came together as a group, including beekeepers, farmers, and scientists. Over a two-year period, we deliberated about how to study the problem of honey bee deaths and conducted field experiments with bee colonies. We show trust and authority to be crucial factors shaping such collaborative research, and we offer a model for structuring collaboration that brings scientists and nonscientists together with the key objects and places of their shared concerns across time

    Sloan Digital Sky Survey Multicolor Observations of GRB010222

    Get PDF
    The discovery of an optical counterpart to GRB010222 (detected by BeppoSAX; Piro 2001) was announced 4.4 hrs after the burst by Henden (2001a). The Sloan Digital Sky Survey's 0.5m photometric telescope (PT) and 2.5m survey telescope were used to observe the afterglow of GRB010222 starting 4.8 hours after the GRB. The 0.5m PT observed the afterglow in five, 300 sec g' band exposures over the course of half an hour, measuring a temporal decay rate in this short period of F_nu \propto t^{-1.0+/-0.5}. The 2.5m camera imaged the counterpart nearly simultaneously in five filters (u' g' r' i' z'), with r' = 18.74+/-0.02 at 12:10 UT. These multicolor observations, corrected for reddening and the afterglow's temporal decay, are well fit by the power-law F_nu \propto nu^{-0.90+/-0.03} with the exception of the u' band UV flux which is 20% below this slope. We examine possible interpretations of this spectral shape, including source extinction in a star forming region.Comment: 8 pages, 4 figures, accepted for publication in ApJ. Two figures added, minor changes to text in this draft. Related material can be found at: http://sdss.fnal.gov:8000/grb

    SDSS J124602.54+011318.8: A Highly Luminous Optical Transient at z=0.385

    Full text link
    We report the discovery of a highly luminous optical transient (OT), SDSS J124602.54+011318.8, associated with a galaxy at a redshift of 0.385. In this paper we consider the possibility that the OT may be a GRB afterglow. Three sets of images and two sets of spectra were obtained as part of the normal operations of the Sloan Digital Sky Survey (SDSS). In the first two image sets, observed two nights apart, the object appears as a point source at r17r^{*}\approx 17. The third image set, observed about 410 days later, shows an extended source which is more than 2.5 magnitudes fainter. The spectra were observed about 400 and 670 days after the first two image sets, and both show an apparently normal galaxy at a redshift of 0.385. Associating the OT with the galaxy, the absolute magnitude was Mr=24.8M_{r^*}=-24.8, which is over 4 magnitudes brighter than the most luminous supernova ever measured. The spectral energy distributions of the galaxy-subtracted OT derived from the first two image sets are well-fit by single power-laws with indices of βν=0.92\beta_{\nu}=-0.92 and -1.29 respectively, similar to most GRB afterglows. Based upon the luminosity of the OT, non-detections in contemporaneous ROTSE-I images, and the change in spectral slope, the OT, if an afterglow, was likely discovered early during a ``plateau'' or slowly-fading phase. The discovery of a GRB afterglow at this stage of the SDSS is consistent with expectations, but only if the optical emission is much less strongly beamed than the gamma-rays. We emphasize that other explanations for the OT cannot be ruled out; a recent follow-up study by [galyam02] provides strong evidence that this source is in fact an unusual AGN.Comment: Updated version to appear in Ap

    The Seventh Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most of the roughly 2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry over 250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A coaddition of these data goes roughly two magnitudes fainter than the main survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2 in the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog (UCAC-2), reducing the rms statistical errors at the bright end to 45 milli-arcseconds per coordinate. A systematic error in bright galaxy photometr is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat-fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities. (Abridged)Comment: 20 pages, 10 embedded figures. Accepted to ApJS after minor correction

    The Baryon Oscillation Spectroscopic Survey of SDSS-III

    Get PDF
    The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7. Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000 quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Lyman alpha forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance D_A to an accuracy of 1.0% at redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyman alpha forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.Comment: 49 pages, 16 figures, accepted by A

    The Fifth Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Fifth Data Release (DR5) of the Sloan Digital Sky Survey (SDSS). DR5 includes all survey quality data taken through June 2005 and represents the completion of the SDSS-I project (whose successor, SDSS-II will continue through mid-2008). It includes five-band photometric data for 217 million objects selected over 8000 square degrees, and 1,048,960 spectra of galaxies, quasars, and stars selected from 5713 square degrees of that imaging data. These numbers represent a roughly 20% increment over those of the Fourth Data Release; all the data from previous data releases are included in the present release. In addition to "standard" SDSS observations, DR5 includes repeat scans of the southern equatorial stripe, imaging scans across M31 and the core of the Perseus cluster of galaxies, and the first spectroscopic data from SEGUE, a survey to explore the kinematics and chemical evolution of the Galaxy. The catalog database incorporates several new features, including photometric redshifts of galaxies, tables of matched objects in overlap regions of the imaging survey, and tools that allow precise computations of survey geometry for statistical investigations.Comment: ApJ Supp, in press, October 2007. This paper describes DR5. The SDSS Sixth Data Release (DR6) is now public, available from http://www.sdss.or

    GRB Afterglows and Other Transients in the SDSS

    Get PDF
    The Sloan Digital Sky Survey (SDSS) will image one quarter of the sky centered on the northern galactic cap and produce a 3‐D map of galaxies and quasars found in the sample. An additional 225 deg2 southern survey will be imaged repeatedly on varying timescales. Here we discuss both archival searches in the SDSS catalog (such as SDSS J24602.54+011318.8) and active searches with the SDSS instruments (such as for GRB 010222) for GRB afterglows and other transient objects. © 2003 American Institute of PhysicsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87288/2/349_1.pd

    Seeding Science, Courting Conclusions: Reexamining the Intersection of Science, Corporate Cash, and the Law

    Full text link
    Social scientists have expressed strong views on corporate influences over science, but most attention has been devoted to broad, Black/White arguments, rather than to actual mechanisms of influence. This paper summarizes an experience where involvement in a lawsuit led to the discovery of an unexpected mechanism: A large corporation facing a multibillion-dollar court judgment quietly provided generous funding to well-known scientists (including at least one Nobel prize winner) who would submit articles to "open," peer-reviewed journals, so that their "unbiased science" could be cited in an appeal to the Supreme Court. On balance, the corporation's most effective techniques of influence may have been provided not by overt pressure, but by encouraging scientists to continue thinking of themselves as independent and impartial

    The 2.5 m Telescope of the Sloan Digital Sky Survey

    Full text link
    We describe the design, construction, and performance of the Sloan Digital Sky Survey Telescope located at Apache Point Observatory. The telescope is a modified two-corrector Ritchey-Chretien design which has a 2.5-m, f/2.25 primary, a 1.08-m secondary, a Gascoigne astigmatism corrector, and one of a pair of interchangeable highly aspheric correctors near the focal focal plane, one for imaging and the other for spectroscopy. The final focal ratio is f/5. The telescope is instrumented by a wide-area, multiband CCD camera and a pair of fiber-fed double spectrographs. Novel features of the telescope include: (1) A 3 degree diameter (0.65 m) focal plane that has excellent image quality and small geometrical distortions over a wide wavelength range (3000 to 10,600 Angstroms) in the imaging mode, and good image quality combined with very small lateral and longitudinal color errors in the spectroscopic mode. The unusual requirement of very low distortion is set by the demands of time-delay-and-integrate (TDI) imaging; (2) Very high precision motion to support open loop TDI observations; and (3) A unique wind baffle/enclosure construction to maximize image quality and minimize construction costs. The telescope had first light in May 1998 and began regular survey operations in 2000.Comment: 87 pages, 27 figures. AJ (in press, April 2006
    corecore