555 research outputs found

    Systematic study of high-pTp_T hadron and photon production with the PHENIX experiment

    Full text link
    The suppression of hadrons with large transverse momentum (pTp_{\rm T}) in central Au+Au collisions at sNN\sqrt{s_{\rm NN}} = 200 GeV compared to a binary scaled p+p reference is one of the major discoveries at RHIC. To understand the nature of this suppression PHENIX has performed detailed studies of the energy and system-size dependence of the suppression pattern, including the first RHIC measurement near SPS energies. An additional source of information is provided by direct photons. Since they escape the medium basically unaffected they can provide a high pTp_{\rm T} baseline for hard-scattering processes. An overview of hadron production at high pTp_{\rm T} in different colliding systems and at energies from sNN=22.4200\sqrt{s_{\rm NN}} = 22.4 - 200 GeV will be given. In addition, the latest direct photon measurements by the PHENIX experiment shall be discussed.Comment: 6 pages, 3 figures, Proceeding for the Conference Strangeness in Quark Matter, Levoca, Slovakia, June 24-29, 200

    Jet reconstruction and jet background classification with the ALICE experiment in PbPb collisions at the LHC

    Full text link
    For a quantitative interpretation of reconstructed jet properties in heavy-ion collisions it is paramount to characterize the contribution from the underlying event and the influence of background fluctuations on the jet signal. In addition to the pure number fluctuations, region-to-region correlated background within one event can enhance or deplete locally the level of background and modify the jet energy. We show a first detailed assessment of background effects using different probes embedded into heavy-ion data and quantify their influence on the reconstructed jet spectrum.Comment: 4 pages, 2 figures, Proceedings for the XXII International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, Quark Matter 2011, Annec

    Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV

    Full text link
    Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 <pT,assoc<pT,trig< < p_{\rm{T}, assoc} < p_{\rm{T}, trig} < 5.0 GeV/cc is examined, to include correlations induced by jets originating from low momen\-tum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range η<0.9|\eta|<0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p-Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton--parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p-Pb collisions. Further, the number scales in the intermediate multiplicity region with the number of binary nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/161

    Charge separation relative to the reaction plane in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}= 2.76 TeV

    Get PDF
    Measurements of charge dependent azimuthal correlations with the ALICE detector at the LHC are reported for Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV. Two- and three-particle charge-dependent azimuthal correlations in the pseudo-rapidity range η<0.8|\eta| < 0.8 are presented as a function of the collision centrality, particle separation in pseudo-rapidity, and transverse momentum. A clear signal compatible with a charge-dependent separation relative to the reaction plane is observed, which shows little or no collision energy dependence when compared to measurements at RHIC energies. This provides a new insight for understanding the nature of the charge dependent azimuthal correlations observed at RHIC and LHC energies.Comment: 12 pages, 3 captioned figures, authors from page 2 to 6, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/286
    corecore