9 research outputs found

    Dynamics of disease characteristics and clinical management of critically ill COVID-19 patients over the time course of the pandemic: an analysis of the prospective, international, multicentre RISC-19-ICU registry.

    No full text
    Background: It remains elusive how the characteristics, the course of disease, the clinical management and the outcomes of critically ill COVID-19 patients admitted to intensive care units (ICU) worldwide have changed over the course of the pandemic. Methods: Prospective, observational registry constituted by 90 ICUs across 22 countries worldwide including patients with a laboratory-confirmed, critical presentation of COVID-19 requiring advanced organ support. Hierarchical, generalized linear mixed-effect models accounting for hospital and country variability were employed to analyse the continuous evolution of the studied variables over the pandemic. Results: Four thousand forty-one patients were included from March 2020 to September 2021. Over this period, the age of the admitted patients (62 [95% CI 60-63] years vs 64 [62-66] years, p < 0.001) and the severity of organ dysfunction at ICU admission decreased (Sequential Organ Failure Assessment 8.2 [7.6-9.0] vs 5.8 [5.3-6.4], p < 0.001) and increased, while more female patients (26 [23-29]% vs 41 [35-48]%, p < 0.001) were admitted. The time span between symptom onset and hospitalization as well as ICU admission became longer later in the pandemic (6.7 [6.2-7.2| days vs 9.7 [8.9-10.5] days, p < 0.001). The PaO2/FiO2 at admission was lower (132 [123-141] mmHg vs 101 [91-113] mmHg, p < 0.001) but showed faster improvements over the initial 5 days of ICU stay in late 2021 compared to early 2020 (34 [20-48] mmHg vs 70 [41-100] mmHg, p = 0.05). The number of patients treated with steroids and tocilizumab increased, while the use of therapeutic anticoagulation presented an inverse U-shaped behaviour over the course of the pandemic. The proportion of patients treated with high-flow oxygen (5 [4-7]% vs 20 [14-29], p < 0.001) and non-invasive mechanical ventilation (14 [11-18]% vs 24 [17-33]%, p < 0.001) throughout the pandemic increased concomitant to a decrease in invasive mechanical ventilation (82 [76-86]% vs 74 [64-82]%, p < 0.001). The ICU mortality (23 [19-26]% vs 17 [12-25]%, p < 0.001) and length of stay (14 [13-16] days vs 11 [10-13] days, p < 0.001) decreased over 19 months of the pandemic. Conclusion: Characteristics and disease course of critically ill COVID-19 patients have continuously evolved, concomitant to the clinical management, throughout the pandemic leading to a younger, less severely ill ICU population with distinctly different clinical, pulmonary and inflammatory presentations than at the onset of the pandemic

    Fecal microbiota transfer for refractory intestinal graft‐versus‐host disease — Experience from two German tertiary centers

    No full text
    Rationale Steroid refractory graft-vs-host disease (sr-GvHD) represents a challenging complication after allogeneic hematopoietic cell transplantation (allo-HCT). Intestinal microbiota (IM) diversity and dysbiosis were identified as influencing factors for the development of acute GvHD. Fecal microbiota transfer (FMT) is hypothesized to restore IM dysbiosis, but there is limited knowledge about the significance of FMT in the treatment of sr-GvHD. Objectives We studied the effects of FMT on sr-GvHD in allo-HCT patients from two German tertiary clinical centers (n = 11 patients; period: March 2017 until July 2019). To assess safety and clinical efficacy, we analyzed clinical data pre- and post-FMT (day -14 to +30 relative to FMT). Moreover, IM were analyzed in donor samples and in a subset of patients pre- and post-FMT by 16S rRNA sequencing. Results Post-FMT, we observed no intervention-associated, systemic inflammatory responses and only minor side effects (5/11 patients: abdominal pain and transformation of peristalsis-each 3/11 and vomiting-1/11). Stool frequencies and volumes were significantly reduced [pre- vs post-FMT (d14): P < .05, respectively] as well as clear attenuation regarding both grading and staging of sr-GvHD was present upon FMT. Moreover, IM analyses revealed an increase of alpha diversity as well as a compositional shifts toward the donor post-FMT. Conclusions In our study, we observed positive effects on sr-GVHD after FMT without the occurrence of major adverse events. Although these findings are in line with published data on beneficial effects of FMT in sr-GvHD, further randomized clinical studies are urgently needed to better define the clinical validity including mode of action

    Protein kinase D2: a versatile player in cancer biology

    No full text

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease

    A first update on mapping the human genetic architecture of COVID-19

    No full text
    corecore