434 research outputs found

    Automatic vigilance: The attention-grabbing power of approach- and avoidance-related social information.

    Get PDF

    Phase Transition in a Stochastic Forest Fire Model and Effects of the Definition of Neighbourhood

    Full text link
    We present results on a stochastic forest fire model, where the influence of the neighbour trees is treated in a more realistic way than usual and the definition of neighbourhood can be tuned by an additional parameter. This model exhibits a surprisingly sharp phase transition which can be shifted by redefinition of neighbourhood. The results can also be interpreted in terms of disease-spreading and are quite unsettling from the epidemologist's point of view, since variation of one crucial parameter only by a few percent can result in the change from endemic to epidemic behaviour.Comment: 23 pages, 13 figure

    The self-organized critical forest-fire model on large scales

    Full text link
    We discuss the scaling behavior of the self-organized critical forest-fire model on large length scales. As indicated in earlier publications, the forest-fire model does not show conventional critical scaling, but has two qualitatively different types of fires that superimpose to give the effective exponents typically measured in simulations. We show that this explains not only why the exponent characterizing the fire-size distribution changes with increasing correlation length, but allows also to predict its asymptotic value. We support our arguments by computer simulations of a coarse-grained model, by scaling arguments and by analyzing states that are created artificially by superimposing the two types of fires.Comment: 26 pages, 7 figure

    REST-mediated recruitment of polycomb repressor complexes in mammalian cells.

    Get PDF
    Polycomb Repressive Complex (PRC) 1 and PRC2 regulate genes involved in differentiation and development. However, the mechanism for how PRC1 and PRC2 are recruited to genes in mammalian cells is unclear. Here we present evidence for an interaction between the transcription factor REST, PRC1, and PRC2 and show that RNF2 and REST co-regulate a number of neuronal genes in human teratocarcinoma cells (NT2-D1). Using NT2-D1 cells as a model of neuronal differentiation, we furthermore showed that retinoic-acid stimulation led to displacement of PRC1 at REST binding sites, reduced H3K27Me3, and increased gene expression. Genome-wide analysis of Polycomb binding in Rest⁻/⁻ and Eed⁻/⁻ mouse embryonic stem (mES) cells showed that Rest was required for PRC1 recruitment to a subset of Polycomb regulated neuronal genes. Furthermore, we found that PRC1 can be recruited to Rest binding sites independently of CpG islands and the H3K27Me3 mark. Surprisingly, PRC2 was frequently increased around Rest binding sites located in CpG-rich regions in the Rest⁻/⁻ mES cells, indicating a more complex interplay where Rest also can limit PRC2 recruitment. Therefore, we propose that Rest has context-dependent functions for PRC1- and PRC2- recruitment, which allows this transcription factor to act both as a recruiter of Polycomb as well as a limiting factor for PRC2 recruitment at CpG islands

    Exploring the relation between 4D and 5D BPS solutions

    Full text link
    Based on recent proposals linking four and five-dimensional BPS solutions, we discuss the explicit dictionary between general stationary 4D and 5D supersymmetric solutions in N=2 supergravity theories with cubic prepotentials. All these solutions are completely determined in terms of the same set of harmonic functions and the same set of attractor equations. As an example, we discuss black holes and black rings in G\"odel-Taub-NUT spacetime. Then we consider corrections to the 4D solutions associated with more general prepotentials and comment on analogous corrections on the 5D side.Comment: 33 pages; refs adde

    Statistical Analyses Support Power Law Distributions Found in Neuronal Avalanches

    Get PDF
    The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to −1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i) analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii) model parameter estimation to determine the specific exponent of the power law, and (iii) comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling (“finite size” effect). This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to −1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex

    Brain energy rescue:an emerging therapeutic concept for neurodegenerative disorders of ageing

    Get PDF
    The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner — a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes

    Measurement of the azimuthal anisotropy of Y(1S) and Y(2S) mesons in PbPb collisions at root s(NN)=5.02 TeV

    Get PDF
    The second-order Fourier coefficients (v(2)) characterizing the azimuthal distributions of Y(1S) and Y(2S) mesons produced in PbPb collisions at root s(NN) = 5.02 TeV are studied. The Y mesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The collected data set corresponds to an integrated luminosity of 1.7 nb(-1). The scalar product method is used to extract the v2 coefficients of the azimuthal distributions. Results are reported for the rapidity range vertical bar y vertical bar < 2.4, in the transverse momentum interval 0 < pT < 50 GeV/c, and in three centrality ranges of 10-30%, 30-50% and 50-90%. In contrast to the J/psi mesons, the measured v(2) values for the Y mesons are found to be consistent with zero. (C) 2021 The Author(s). Published by Elsevier B.V.Peer reviewe

    Wave-swept coralliths of Saba Bank, Dutch Caribbean

    Get PDF
    • 

    corecore