31 research outputs found

    Cryptotephra preserved in Lake Suigetsu (SG14 core) reveals the eruption timing and distribution of ash fall from Japanese volcanoes during the Late-glacial to early Holocene

    Get PDF
    Long sedimentary successions extracted for palaeoclimate research regularly preserve volcanic ash (tephra) fall from explosive eruptions and are increasingly used to elucidate the timing and scale of past events. This study investigates the non-visible tephra (cryptotephra) layers preserved in the annually laminated and intensively 14 C dated sediments of Lake Suigetsu (SG14 core), Japan. The cryptotephra investigations reported here focus on the Late-glacial to early Holocene sediments that were deposited between two visible tephra layers, the Ulleungdo (U)-Oki (10.2 ka) and the Sambe ‘Sakate’ (19.6 ka), and consequently span an interval of abrupt climate change making any newly identified cryptotephra layers invaluable chrono-stratigraphic markers. Using major and trace element volcanic glass compositions the cryptotephra are used to assign provenance to chrono-stratigraphically relevant eruption units. Five new cryptotephra layers are identified within this time interval. Three cryptotephra layers are from Kyushu volcanoes (SG14-1337 and SG14-1554 [Sakurajima]; and SG14-1806 [Kirishima]), all of which offer important chronological constraints on archaeological (Jomon) cultural transitions in southern Japan during the last termination. Another cryptotephra (SG14-1579), is assigned to activity on Niijima Island providing the first known distal occurrence and age of the eruption. Finally, the SG14-1798 cryptotephra precisely dated at 16,619 ± 74 IntCal20 yrs BP (2σ) is linked to Asama (As) volcano and more precisely the later phases of the As-YKU eruption. This discovery greatly expands the distribution of ash fall from this multi-phased eruption at Asama volcano, which affected an area in the region of 120,000 km2. Refining the timing of the eruption and the distribution of As-YKU ash fall is important as it offers an excellent chrono- and climato45 stratigraphic marker suitable for assessing spatial variability in environmental response to past climate change during the termination of the last glacial

    Constraints on the Timing of Explosive Volcanism at Aso and Aira Calderas (Japan) Between 50 and 30 ka: New Insights From the Lake Suigetsu Sedimentary Record (SG14 Core)

    Get PDF
    Volcanoes in the East Asian/Pacific region have been the source of some of the largest magnitude eruptions during the Quaternary, and accurately evaluating their eruptive histories is essential for hazard assessments. To overcome difficulties in resolving and precisely dating eruptions in the near‐source realm, the high‐resolution (varved) sediments of Lake Suigetsu (central Honshu, Japan) were examined for the presence of non‐visible (cryptotephra) layers from 50 ka up until the 30 ka AT caldera‐forming event of Aira volcano. Cryptotephra layers are four times more frequently preserved than visible markers in the Suigetsu sediments, meaning that this archive provides a unique and unprecedented record of eruptions that were dispersed towards the densely populated regions of central Honshu. Major and trace element volcanic glass chemistry is used to fingerprint the ash layers and pinpoint their volcanic origin. Tephras are found throughout the investigated sediments, but the highest abundance of ash fall events are recorded between 39 and 30 ka, capturing a period of intense volcanism at calderas on Kyushu Island (Japan). The augmented Suigetsu tephrostratigraphy records at least seven eruption events from Aso caldera (southern Kyushu) that post‐date the widespread ACP‐4 Plinian eruption (ca. 50 ka), and four explosive events from Aira (central Kyushu) that occurred leading up to the catastrophic caldera‐forming AT eruption (ca. 30 ka)

    A Pregnancy and Childhood Epigenetics Consortium (PACE) meta-analysis highlights potential relationships between birth order and neonatal blood DNA methylation

    Get PDF
    Higher birth order is associated with altered risk of many disease states. Changes in placentation and exposures to in utero growth factors with successive pregnancies may impact later life disease risk via persistent DNA methylation alterations. We investigated birth order with Illumina DNA methylation array data in each of 16 birth cohorts (8164 newborns) with European, African, and Latino ancestries from the Pregnancy and Childhood Epigenetics Consortium. Meta-analyzed data demonstrated systematic DNA methylation variation in 341 CpGs (FDR adjusted P &lt; 0.05) and 1107 regions. Forty CpGs were located within known quantitative trait loci for gene expression traits in blood, and trait enrichment analysis suggested a strong association with immune-related, transcriptional control, and blood pressure regulation phenotypes. Decreasing fertility rates worldwide with the concomitant increased proportion of first-born children highlights a potential reflection of birth order-related epigenomic states on changing disease incidence trends.</p

    A Pregnancy and Childhood Epigenetics Consortium (PACE) meta-analysis highlights potential relationships between birth order and neonatal blood DNA methylation

    Get PDF
    Higher birth order is associated with altered risk of many disease states. Changes in placentation and exposures to in utero growth factors with successive pregnancies may impact later life disease risk via persistent DNA methylation alterations. We investigated birth order with Illumina DNA methylation array data in each of 16 birth cohorts (8164 newborns) with European, African, and Latino ancestries from the Pregnancy and Childhood Epigenetics Consortium. Meta-analyzed data demonstrated systematic DNA methylation variation in 341 CpGs (FDR adjusted P &lt; 0.05) and 1107 regions. Forty CpGs were located within known quantitative trait loci for gene expression traits in blood, and trait enrichment analysis suggested a strong association with immune-related, transcriptional control, and blood pressure regulation phenotypes. Decreasing fertility rates worldwide with the concomitant increased proportion of first-born children highlights a potential reflection of birth order-related epigenomic states on changing disease incidence trends.</p

    The Eurasian Modern Pollen Database (EMPD), version 2

    Get PDF
    The Eurasian (née European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land cover, and land use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60 % from 4826 to 8134. Much of the improvement in data coverage has come from northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated map-based viewer at https://empd2.github.io and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019)Swiss National Science Foundation | Ref. 200021_16959

    The Eurasian Modern Pollen Database (EMPD), version 2

    Get PDF
    The Eurasian (nee European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land cover, and land use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60% from 4826 to 8134. Much of the improvement in data coverage has come from northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated map-based viewer at https://empd2.github.io and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019).Peer reviewe

    A Pregnancy and Childhood Epigenetics Consortium (PACE) meta-analysis highlights potential relationships between birth order and neonatal blood DNA methylation

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: Blood samples and raw genetic data of neonatal subjects from each cohort are governed by their respective institutions and/or government agencies, and mostly could not be shared publicly without specific approvals. For example, for data from first author cohort, California Childhood Leukemia Study (CCLS), we respectfully are unable to share raw, individual genetic data freely with other investigators. Should we be contacted by other investigators who would like to use the data; we will direct them to the California Department of Public Health Institutional Review Board to establish their own approved protocol to utilize the data, which can then be shared peer-to-peer.Higher birth order is associated with altered risk of many disease states. Changes in placentation and exposures to in utero growth factors with successive pregnancies may impact later life disease risk via persistent DNA methylation alterations. We investigated birth order with Illumina DNA methylation array data in each of 16 birth cohorts (8164 newborns) with European, African, and Latino ancestries from the Pregnancy and Childhood Epigenetics Consortium. Meta-analyzed data demonstrated systematic DNA methylation variation in 341 CpGs (FDR adjusted P < 0.05) and 1107 regions. Forty CpGs were located within known quantitative trait loci for gene expression traits in blood, and trait enrichment analysis suggested a strong association with immune-related, transcriptional control, and blood pressure regulation phenotypes. Decreasing fertility rates worldwide with the concomitant increased proportion of first-born children highlights a potential reflection of birth order-related epigenomic states on changing disease incidence trends.National Institute of Environmental Health SciencesNational Cancer InstituteUS Environmental Protection Agenc

    A Pregnancy and Childhood Epigenetics Consortium (PACE) meta-analysis highlights potential relationships between birth order and neonatal blood DNA methylation.

    Get PDF
    Higher birth order is associated with altered risk of many disease states. Changes in placentation and exposures to in utero growth factors with successive pregnancies may impact later life disease risk via persistent DNA methylation alterations. We investigated birth order with Illumina DNA methylation array data in each of 16 birth cohorts (8164 newborns) with European, African, and Latino ancestries from the Pregnancy and Childhood Epigenetics Consortium. Meta-analyzed data demonstrated systematic DNA methylation variation in 341 CpGs (FDR adjusted P < 0.05) and 1107 regions. Forty CpGs were located within known quantitative trait loci for gene expression traits in blood, and trait enrichment analysis suggested a strong association with immune-related, transcriptional control, and blood pressure regulation phenotypes. Decreasing fertility rates worldwide with the concomitant increased proportion of first-born children highlights a potential reflection of birth order-related epigenomic states on changing disease incidence trends

    The Eurasian Modern Pollen Database (EMPD), version 2

    Get PDF
    Abstract. The Eurasian (née European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land cover, and land use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60 % from 4826 to 8134. Much of the improvement in data coverage has come from northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated map-based viewer at https://empd2.github.io and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019).</jats:p

    High-Resolution Magneto–Climatostratigraphy of MIS 19 from the Osaka Group, Japan

    No full text
    corecore