278 research outputs found

    Expression of Pigment Cell-Specific Genes in the Ontogenesis of the Sea Urchin Strongylocentrotus intermedius

    Get PDF
    One of the polyketide compounds, the naphthoquinone pigment echinochrome, is synthesized in sea urchin pigment cells. We analyzed polyketide synthase (pks) and sulfotransferase (sult) gene expression in embryos and larvae of the sea urchin Strongylocentrotus intermedius from various stages of development and in specific tissues of the adults. We observed the highest level of expression of the pks and sult genes at the gastrula stage. In unfertilized eggs, only trace amounts of the pks and sult transcripts were detected, whereas no transcripts of these genes were observed in spermatozoids. The addition of shikimic acid, a precursor of naphthoquinone pigments, to zygotes and embryos increased the expression of the pks and sult genes. Our findings, including the development of specific conditions to promote pigment cell differentiation of embryonic sea urchin cells in culture, represent a definitive study on the molecular signaling pathways that are involved in the biosynthesis of pigments during sea urchin development

    A molecular assembly system for presentation of antigens on the surface of HBc virus-like particles

    Get PDF
    AbstractHepatitis B virus-like particles, icosahedral structures formed by multiple core protein dimers, are promising immune-enhancing vaccine carriers for foreign antigens. Insertions into the surface-exposed immunodominant loop are especially immunogenic. However, the need to conserve the particulate structure to ensure high immunogenicity imposes restraints on the nature of the heterologous sequence that can be inserted. We propose a new approach to constructing HBc particles linked to the target epitopes that relies on non-covalent interactions between the epitope and pre-assembled unmodified HBc particles. Interaction was enabled by fusion of the epitope to the GSLLGRMKGA peptide, binding to the spike tips. This peptide may be used as a “binding tag” allowing in vitro construction of HBc particles carrying the target peptide. Such virus-like particles carrying multiple copies of the extracellular domain of the M2 protein of different influenza strains appeared to be highly immunogenic and protected immunised mice against a lethal influenza challenge

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe

    Physiological Conditions and dsRNA Application Approaches for Exogenously induced RNA Interference in Arabidopsis thaliana

    No full text
    Recent studies have revealed that foliar application of double-stranded RNAs (dsRNAs) or small-interfering RNAs (siRNAs) encoding specific genes of plant pathogens triggered RNA interference (RNAi)-mediated silencing of the gene targets. However, a limited number of reports documented silencing of plant endogenes or transgenes after direct foliar RNA application. This study analyzed the importance of physiological conditions (plant age, time of day, soil moisture, high salinity, heat, and cold stresses) and different dsRNA application means (brush spreading, spraying, infiltration, inoculation, needle injection, and pipetting) for suppression of neomycin phosphotransferase II (NPTII) transgene in Arabidopsis thaliana, as transgenes are more prone to silencing. We observed a higher NPTII suppression when dsRNA was applied at late day period, being most efficient at night, which revealed a diurnal variation in dsRNA treatment efficacy. Exogenous NPTII-dsRNA considerably reduced NPTII expression in 4-week-old plants and only limited it in 2- and 6-week-old plants. In addition, a more discernible NPTII downregulation was detected under low soil moisture conditions. Treatment of adaxial and abaxial leaf surfaces by brushes, spraying, and pipetting showed a higher NPTII suppression, while infiltration and inoculation were less efficient. Thus, appropriate plant age, late time of day, low soil moisture, and optimal dsRNA application modes are important for exogenously induced gene silencing

    The Specificity of Transgene Suppression in Plants by Exogenous dsRNA

    No full text
    The phenomenon of RNA interference (RNAi) is widely used to develop new approaches for crop improvement and plant protection. Recent investigations show that it is possible to downregulate plant transgenes, as more prone sequences to silencing than endogenous genes, by exogenous application of double-stranded RNAs (dsRNAs) and small interfering RNAs (siRNAs). However, there are scarce data on the specificity of exogenous RNAs. In this study, we explored whether plant transgene suppression is sequence-specific to exogenous dsRNAs and whether similar effects can be caused by exogenous DNAs that are known to be perceived by plants and induce certain epigenetic and biochemical changes. We treated transgenic plants of Arabidopsis thaliana bearing the neomycin phosphotransferase II (NPTII) transgene with specific synthetic NPTII-dsRNAs and non-specific dsRNAs, encoding enhanced green fluorescent protein (EGFP), as well as with DNA molecules mimicking the applied RNAs. None of the EGFP-dsRNA doses resulted in a significant decrease in NPTII transgene expression in the NPTII-transgenic plants, while the specific NPTII-dsRNA significantly reduced NPTII expression in a dose-dependent manner. Long DNAs mimicking dsRNAs and short DNA oligonucleotides mimicking siRNAs did not exhibit a significant effect on NPTII transgene expression. Thus, exogenous NPTII-dsRNAs induced a sequence-specific and RNA-specific transgene-suppressing effect, supporting external application of dsRNAs as a promising strategy for plant gene regulation

    Interaction of Plants and Endophytic Microorganisms: Molecular Aspects, Biological Functions, Community Composition, and Practical Applications

    No full text
    Endophytes are microorganisms that live asymptomatically inside plant tissues [...

    Exogenous RNAs for Gene Regulation and Plant Resistance

    No full text
    Recent investigations documented that plants can uptake and process externally applied double-stranded RNAs (dsRNAs), hairpin RNAs (hpRNAs), and small interfering RNAs (siRNAs) designed to silence important genes of plant pathogenic viruses, fungi, or insects. The exogenously applied RNAs spread locally and systemically, move into the pathogens, and induce RNA interference-mediated plant pathogen resistance. Recent findings also provided examples of plant transgene and endogene post-transcriptional down-regulation by complementary dsRNAs or siRNAs applied onto the plant surfaces. Understanding the plant perception and processing of exogenous RNAs could result in the development of novel biotechnological approaches for crop protection. This review summarizes and discusses the emerging studies reporting on exogenous RNA applications for down-regulation of essential fungal and insect genes, targeting of plant viruses, or suppression of plant transgenes and endogenes for increased resistance and changed phenotypes. We also analyze the current understanding of dsRNA uptake mechanisms and dsRNA stability in plant environments

    Quinoid Pigments of Sea Urchins <em>Scaphechinus mirabilis</em> and <em>Strongylocentrotus intermedius</em>: Biological Activity and Potential Applications

    No full text
    This review presents literature data: the history of the discovery of quinoid compounds, their biosynthesis and biological activity. Special attention is paid to the description of the quinoid pigments of the sea urchins Scaphechinus mirabilis (from the family Scutellidae) and Strongylocentrotus intermedius (from the family Strongylocentrotidae). The marine environment is considered one of the most important sources of natural bioactive compounds with extremely rich biodiversity. Primary- and some secondary-mouthed animals contain very high concentrations of new biologically active substances, many of which are of significant potential interest for medical purposes. The quinone pigments are products of the secondary metabolism of marine animals, can have complex structures and become the basis for the development of new natural products in echinoids that are modulators of chemical interactions and possible active ingredients in medicinal preparations. More than 5000 chemical compounds with high pharmacological potential have been isolated and described from marine organisms. There are three well known ways of naphthoquinone biosynthesis—polyketide, shikimate and mevalonate. The polyketide pathway is the biosynthesis pathway of various quinones. The shikimate pathway is the main pathway in the biosynthesis of naphthoquinones. It should be noted that all quinoid compounds in plants and animals can be synthesized by various ways of biosynthesis
    corecore