1,712 research outputs found

    Inhomogeneous compact extra dimensions and de Sitter cosmology

    Full text link
    In the framework of multidimensional f(R)f(R) gravity, we study the metrics of compact extra dimensions assuming that our 4D space has the de Sitter metric. Manifolds described by such metrics could be formed at the inflationary and even higher energy scales. It is shown that in the presence of a scalar field, varying in the extra factor space M2\mathbb{M}_2, it is possible to obtain a variety of inhomogeneous metrics in M2\mathbb{M}_2. Each of these metrics leads to a certain value of the 4D cosmological constant Λ4\Lambda_4, and in particular, it is possible to obtain Λ4=0\Lambda_4 =0, as is confirmed by numerically obtained solutions. A nontrivial scalar field distribution in the extra dimensions is an important feature of this family of models.Comment: 15 pages, 9 figure

    Individual addressing of ion qubits with counter-propagating optical frequency combs

    Full text link
    We propose a new method of individual single-qubit addressing of linear trapped-ion chains utilizing two ultrastable femtosecond frequency combs. For that, we suggest implementing the single-qubit gates with two counter-propagating frequency combs overlapping on the target ion and causing the AC Stark shift between the qubit levels. With analytical calculations and numerical modeling, we show that the arbitrary single-qubit rotations can be indeed realized using only laser fields propagating along the ion chain. We analyze the error sources for the proposed addressing method and prove that it allows implementing the single-qubit gates with high fidelity

    Multi-particle Production and Thermalization in High-Energy QCD

    Get PDF
    We argue that multi-particle production in high energy hadron and nuclear collisions can be considered as proceeding through the production of gluons in the background classical field. In this approach we derive the gluon spectrum immediately after the collision and find that at high energies it is parametrically enhanced by ln(1/x) with respect to the quasi-classical result (x is the Bjorken variable). We show that the produced gluon spectrum becomes thermal (in three dimensions) with an effective temperature determined by the saturation momentum Qs, T= c Qs/2pi during the time ~1/T; we estimate c=sqrt{2pi}/2 ~ 1.2. Although this result by itself does not imply that the gluon spectrum will remain thermal at later times, it has an interesting applications to heavy ion collisions. In particular, we discuss the possibility of Bose-Einstein condensation of the produced gluon pairs and estimate the viscosity of the produced gluon system.Comment: 25 pages, 4 figures; typos fixed; discussions expanded; we added a new section IV in which we argue that at high energies the production mechanism discussed in the paper is parametrically enhanced by ln(1/x) with respect to the quasi-classical resul

    Pair production by boost-invariant fields in comoving coordinates

    Full text link
    We derive the pair-production probability in a constant electric field in Rindler coordinates in a quasi-classical approximation. Our result is different from the pair-production probability in an inertial frame (Schwinger formula). In particular, it exhibits non-trivial dependence on rapidity and deviation from Gaussian behavior at small transverse momenta. Our results can be important for analysis of particle production in heavy-ion collisions.Comment: 12 pages, 2 figures. Discussion added and typos fixe

    Ab initio calculations of pure and Co+2-doped MgF2 crystals

    Get PDF
    This research was partly supported by the Kazakhstan Science Project № AP05134367«Synthesis of nanocrystals in track templates of SiO2/Si for sensory, nano- and optoelectronic applications», as well as by Latvian Research Council project lzp-2018/1-0214. Calculations were performed on Super Cluster (LASC) in the Institute of Solid State Physics (ISSP) of the University of Latvia. Authors are indebted to S. Piskunov for stimulating discussions.Ab initio calculations of the atomic, electronic and vibrational structure of a pure and Co+2 doped MgF2 crystals were performed and discussed. We demonstrate that Co+2 (3d7) ions substituting for Mg is in the high spin state. In particular, the role of exact non-local exchange is emphasized for a proper reproduction of not only the band gap but also other MgF2 bulk properties. It allows us for reliable estimate of the dopant energy levels position in the band gap, and its comparison with the experimental data. Thus, the present ab initio calculations and experiment data demonstrate that the Co+2 ground state level lies at ≈2 eV above the valence band top.Kazakhstan Science Project № AP05134367; Latvian Council of Science project lzp-2018/1-0214; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    First results of the Kourovka Planet Search: discovery of transiting exoplanet candidates in the first three target fields

    Full text link
    We present the first results of our search for transiting exoplanet candidates as part of the Kourovka Planet Search (KPS) project. The primary objective of the project is to search for new hot Jupiters which transit their host stars, mainly in the Galactic plane, in the RcR_c magnitude range of 11 to 14 mag. Our observations were performed with the telescope of the MASTER robotic network, installed at the Kourovka astronomical observatory of the Ural Federal University (Russia), and the Rowe-Ackermann Schmidt Astrograph, installed at the private Acton Sky Portal Observatory (USA). As test observations, we observed three celestial fields of size 2×22\times2 deg2^2 during the period from 2012 to 2015. As a result, we discovered four transiting exoplanet candidates among the 39000 stars of the input catalogue. In this paper, we provide the description of the project and analyse additional photometric, spectral, and speckle interferometric observations of the discovered transiting exoplanet candidates. Three of the four transiting exoplanet candidates are most likely astrophysical false positives, while the nature of the fourth (most promising) candidate remains to be ascertained. Also, we propose an alternative observing strategy that could increase the project's exoplanet haul.Comment: 11 pages, 16 figures; Accepted for publication in Monthly Notices of the Royal Astronomical Society 201

    KPS-1b: The First Transiting Exoplanet Discovered Using an Amateur Astronomer's Wide-field CCD Data

    Get PDF
    We report the discovery of the transiting hot Jupiter KPS-1b. This exoplanet orbits a V = 13.0 K1-type main sequence star every 1.7 days, has a mass of 1.090 (+0.086 -0.087) MJup and a radius of 1.03 (+0.13 -0.12) RJup. The discovery was made by the prototype Kourovka Planet Search (KPS) project, which used wide-field CCD data gathered by an amateur astronomer using readily available and relatively affordable equipment. Here we describe the equipment and observing technique used for the discovery of KPS-1b, its characterization with spectroscopic observations by the SOPHIE spectrograph and with high-precision photometry obtained with 1m class telescopes. We also outline the KPS project evolution into the Galactic Plane eXoplanet survey. The discovery of KPS-1b represents a new major step of the contribution of amateur astronomers to the burgeoning field of exoplanetology

    Another Shipment of Six Short-Period Giant Planets from TESS

    Get PDF
    We present the discovery and characterization of six short-period, transiting giant planets from NASA's Transiting Exoplanet Survey Satellite (TESS) -- TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642), TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), & TOI-2497 (TIC 97568467). All six planets orbit bright host stars (8.9 <G< 11.8, 7.7 <K< 10.1). Using a combination of time-series photometric and spectroscopic follow-up observations from the TESS Follow-up Observing Program (TFOP) Working Group, we have determined that the planets are Jovian-sized (RP_{P} = 1.00-1.45 RJ_{J}), have masses ranging from 0.92 to 5.35 MJ_{J}, and orbit F, G, and K stars (4753 << Teff_{eff} << 7360 K). We detect a significant orbital eccentricity for the three longest-period systems in our sample: TOI-2025 b (P = 8.872 days, ee = 0.220±0.0530.220\pm0.053), TOI-2145 b (P = 10.261 days, ee = 0.1820.049+0.0390.182^{+0.039}_{-0.049}), and TOI-2497 b (P = 10.656 days, ee = 0.1960.053+0.0590.196^{+0.059}_{-0.053}). TOI-2145 b and TOI-2497 b both orbit subgiant host stars (3.8 << log\log g <<4.0), but these planets show no sign of inflation despite very high levels of irradiation. The lack of inflation may be explained by the high mass of the planets; 5.350.35+0.325.35^{+0.32}_{-0.35} MJ_{\rm J} (TOI-2145 b) and 5.21±0.525.21\pm0.52 MJ_{\rm J} (TOI-2497 b). These six new discoveries contribute to the larger community effort to use {\it TESS} to create a magnitude-complete, self-consistent sample of giant planets with well-determined parameters for future detailed studies.Comment: 20 Pages, 6 Figures, 8 Tables, Accepted by MNRA

    Measurement of differential cross sections for Z bosons produced in association with charm jets in pp collisions at root s=13 TeV

    Get PDF
    Measurements are presented of differential cross sections for the production of Z bosons in association with at least one jet initiated by a charm quark in pp collisions at root s = 13 TeV. The data recorded by the CMS experiment at the LHC correspond to an integrated luminosity of 35.9 fb(-1). The final states contain a pair of electrons or muons that are the decay products of a Z boson, and a jet consistent with being initiated by a charm quark produced in the hard interaction. Differential cross sections as a function of the transverse momentum p(T) of the Z boson and p(T) of the charm jet are compared with predictions from Monte Carlo event generators. The inclusive production cross section 405.4 +/- 5.6 (stat) +/- 24.3 (exp) +/- 3.7 (theo) pb, is measured in a fiducial region requiring both leptons to have pseudorapidity |eta| 10 GeV, at least one lepton with p(T)> 26 GeV, and a mass of the pair in the range 71-111 GeV, while the charm jet is required to have p(T)> 30 GeV and |eta| < 2.4. These are the first measurements of these cross sections in proton-proton collisions at 13 TeV.Peer reviewe

    Measurement of the Z boson differential production cross section using its invisible decay mode (Z -> nu(nu)over-bar) in proton-proton collisions at root s=13 TeV

    Get PDF
    Measurements of the total and differential fiducial cross sections for the Z boson decaying into two neutrinos are presented at the LHC in proton-proton collisions at a center-of-mass energy of 13TeV. The data were collected by the CMS detector in 2016 and correspond to an integrated luminosity of 35.9 fb(-1). In these measurements, events are selected containing an imbalance in transverse momentum and one or more energetic jets. The fiducial differential cross section is measured as a function of the Z boson transverse momentum. The results are combined with a previous measurement of charged-lepton decays of the Z boson. The measured total fiducial cross section for events with Z boson transverse momentum greater than 200 GeV is 3000(-170)(+180) fb.Peer reviewe
    corecore