22 research outputs found

    A Polychaete’s Powerful Punch: Venom Gland Transcriptomics of Glycera Reveals a Complex Cocktail of Toxin Homologs

    Get PDF
    © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. The article attached is the publisher's pdf

    Deiminated proteins and extracellular vesicles - novel serum biomarkers in whales and Orca

    Get PDF
    Peptidylarginine deiminases (PADs) are a family of phylogenetically conserved calcium-dependent enzymes which cause post-translational protein deimination. This can result in neoepitope generation, affect gene regulation and allow for protein moonlighting via functional and structural changes in target proteins. Extracellular vesicles (EVs) carry cargo proteins and genetic material and are released from cells as part of cellular communication. EVs are found in most body fluids where they can be useful biomarkers for assessment of health status. Here, serum-derived EVs were profiled, and post-translationally deiminated proteins and EV-related microRNAs are described in 5 ceataceans: minke whale, fin whale, humpback whale, Cuvier's beaked whale and orca. EV-serum profiles were assessed by transmission electron microscopy and nanoparticle tracking analysis. EV profiles varied between the 5 species and were identified to contain deiminated proteins and selected key inflammatory and metabolic microRNAs. A range of proteins, critical for immune responses and metabolism were identified to be deiminated in cetacean sera, with some shared KEGG pathways of deiminated proteins relating to immunity and physiology, while some KEGG pathways were species-specific. This is the first study to characterise and profile EVs and to report deiminated proteins and putative effects of protein-protein interaction networks via such post-translationald deimination in cetaceans, revealing key immune and metabolic factors to undergo this post-translational modification. Deiminated proteins and EVs profiles may possibly be developed as new biomarkers for assessing health status of sea mammals

    Primary Structure and Conformation of a Tetrodotoxin-Binding Protein in the Hemolymph of Non-Toxic Shore Crab <i>Hemigrapsus sanguineus</i>

    No full text
    Tetrodotoxin (TTX)-binding proteins are present in toxic TTX-bearing animals, such as pufferfish and gastropods. These may prevent autotoxicity. However, TTX-binding proteins are also found in the nontoxic marine shore crab, Hemigrapsus sanguineus. Here, we isolated the TTX-binding protein, HSTBP (Hemigrapsus sanguineus TTX-binding protein), from the hemolymph of H. sanguineus and elucidated its primary structure using cDNA cloning. HSTBP, a 400 kDa acidic glycoprotein by gel filtration high-performance liquid chromatography, comprises 3 subunits, 88 kDa (subunit-1), 65 kDa (subunit-2), and 26 kDa (subunit-3) via sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reduced conditions. The open reading frame of the cDNA comprises 5049 base pairs encoding 1683 amino acid residues, and the mature protein contains 1650 amino acid residues from Arg34 to Ser1683. The three subunits are arranged in tandem in the following order: subunit-3 (Arg34-Gln261), subunit-1 (Asp262-Phe1138), and subunit-2 (Val1139-Ser1683). A BLAST homology search showed weak similarity of HSTBP to clotting proteins of crustaceans (29–40%). SMART analysis revealed a von Willebrand factor (vWF)-type (⇒delete hyphen) D domain at Phe1387-Gly1544. We confirmed that the recombinant protein of HSTBP subunit-2 containing the vWF-type (⇒delete hyphen) D domain bound to TTX at a molecular ratio of 1:1

    Synthesis of Daidzein Glycosides, α-Tocopherol Glycosides, Hesperetin Glycosides by Bioconversion and Their Potential for Anti-Allergic Functional-Foods and Cosmetics

    No full text
    Daidzein is a common isoflavone, having multiple biological effects such as anti-inflammation, anti-allergy, and anti-aging. &alpha;-Tocopherol is the tocopherol isoform with the highest vitamin E activity including anti-allergic activity and anti-cancer activity. Hesperetin is a flavone, which shows potent anti-inflammatory effects. These compounds have shortcomings, i.e., water-insolubility and poor absorption after oral administration. The glycosylation of bioactive compounds can enhance their water-solubility, physicochemical stability, intestinal absorption, and biological half-life, and improve their bio- and pharmacological properties. They were transformed by cultured Nicotiana tabacum cells to 7-&beta;-glucoside and 7-&beta;-gentiobioside of daidzein, and 3&prime;- and 7-&beta;-glucosides, 3&prime;,7-&beta;-diglucoside, and 7-&beta;-gentiobioside of hesperetin. Daidzein and &alpha;-tocopherol were glycosylated by galactosylation with &beta;-glucosidase to give 4&prime;- and 7-&beta;-galactosides of daidzein, which were new compounds, and &alpha;-tocopherol 6-&beta;-galactoside. These nine glycosides showed higher anti-allergic activity, i.e., inhibitory activity toward histamine release from rat peritoneal mast cells, than their respective aglycones. In addition, these glycosides showed higher tyrosinase inhibitory activity than the corresponding aglycones. Glycosylation of daidzein, &alpha;-tocopherol, and hesperetin greatly improved their biological activities
    corecore