106 research outputs found

    A generic audio classification and segmentation approach for multimedia indexing and retrieval

    Full text link

    A Greedy Iterative Layered Framework for Training Feed Forward Neural Networks

    Get PDF
    info:eu-repo/grantAgreement/FCT/3599-PPCDT/PTDC%2FCCI-INF%2F29168%2F2017/PT" Custode, L. L., Tecce, C. L., Bakurov, I., Castelli, M., Cioppa, A. D., & Vanneschi, L. (2020). A Greedy Iterative Layered Framework for Training Feed Forward Neural Networks. In P. A. Castillo, J. L. Jiménez Laredo, & F. Fernández de Vega (Eds.), Applications of Evolutionary Computation - 23rd European Conference, EvoApplications 2020, Held as Part of EvoStar 2020, Proceedings (pp. 513-529). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 12104 LNCS). Springer. https://doi.org/10.1007/978-3-030-43722-0_33In recent years neuroevolution has become a dynamic and rapidly growing research field. Interest in this discipline is motivated by the need to create ad-hoc networks, the topology and parameters of which are optimized, according to the particular problem at hand. Although neuroevolution-based techniques can contribute fundamentally to improving the performance of artificial neural networks (ANNs), they present a drawback, related to the massive amount of computational resources needed. This paper proposes a novel population-based framework, aimed at finding the optimal set of synaptic weights for ANNs. The proposed method partitions the weights of a given network and, using an optimization heuristic, trains one layer at each step while “freezing” the remaining weights. In the experimental study, particle swarm optimization (PSO) was used as the underlying optimizer within the framework and its performance was compared against the standard training (i.e., training that considers the whole set of weights) of the network with PSO and the backward propagation of the errors (backpropagation). Results show that the subsequent training of sub-spaces reduces training time, achieves better generalizability, and leads to the exhibition of smaller variance in the architectural aspects of the network.authorsversionpublishe

    Brain Tumor Segmentation and Classification from Sensor-Based Portable Microwave Brain Imaging System Using Lightweight Deep Learning Models

    Get PDF
    Automated brain tumor segmentation from reconstructed microwave (RMW) brain images and image classification is essential for the investigation and monitoring of the progression of brain disease. The manual detection, classification, and segmentation of tumors are extremely time-consuming but crucial tasks due to the tumor's pattern. In this paper, we propose a new lightweight segmentation model called MicrowaveSegNet (MSegNet), which segments the brain tumor, and a new classifier called the BrainImageNet (BINet) model to classify the RMW images. Initially, three hundred (300) RMW brain image samples were obtained from our sensors-based microwave brain imaging (SMBI) system to create an original dataset. Then, image preprocessing and augmentation techniques were applied to make 6000 training images per fold for a 5-fold cross-validation. Later, the MSegNet and BINet were compared to state-of-the-art segmentation and classification models to verify their performance. The MSegNet has achieved an Intersection-over-Union (IoU) and Dice score of 86.92% and 93.10%, respectively, for tumor segmentation. The BINet has achieved an accuracy, precision, recall, F1-score, and specificity of 89.33%, 88.74%, 88.67%, 88.61%, and 94.33%, respectively, for three-class classification using raw RMW images, whereas it achieved 98.33%, 98.35%, 98.33%, 98.33%, and 99.17%, respectively, for segmented RMW images. Therefore, the proposed cascaded model can be used in the SMBI system.This work was supported by the Universiti Kebangsaan Malaysia (UKM), project grant code: DIP-2020-009. This work was also supported by Grant NPRP12S-0227-190164 from the Qatar National Research Fund, a member of Qatar Foundation, Doha, Qatar, and student grant from Qatar University, Grant # QUST-1-CENG-2023-796. The claims made herein are solely the responsibility of the authors. Open access publication is supported by Qatar National Library.Scopu

    The 2013 face recognition evaluation in mobile environment

    Get PDF
    Automatic face recognition in unconstrained environments is a challenging task. To test current trends in face recognition algorithms, we organized an evaluation on face recognition in mobile environment. This paper presents the results of 8 different participants using two verification metrics. Most submitted algorithms rely on one or more of three types of features: local binary patterns, Gabor wavelet responses including Gabor phases, and color information. The best results are obtained from UNILJ-ALP, which fused several image representations and feature types, and UC-HU, which learns optimal features with a convolutional neural network. Additionally, we assess the usability of the algorithms in mobile devices with limited resources. © 2013 IEEE

    The 2nd competition on counter measures to 2D face spoofing attacks

    Get PDF
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. I. Chingovska, J. Yang, Z. Lei, D. Yi, S. Z. Li, O. Kahm, C. Glaser, N. Damer, A. Kuijper, A. Nouak, J. Komulainen, T. Pereira, S. Gupta, S. Khandelwal, S. Bansal, A. Rai, T. Krishna, D. Goyal, M.-A. Waris, H. Zhang, I. Ahmad, S. Kiranyaz, M. Gabbouj, R. Tronci, M. Pili, N. Sirena, F. Roli, J. Galbally, J. Fiérrez, A. Pinto, H. Pedrini, W. S. Schwartz, A. Rocha, A. Anjos, S. Marcel, "The 2nd competition on counter measures to 2D face spoofing attacks" in International Conference on Biometrics (ICB), Madrid (Spain), 2013, 1-6As a crucial security problem, anti-spoofing in biometrics, and particularly for the face modality, has achieved great progress in the recent years. Still, new threats arrive inform of better, more realistic and more sophisticated spoofing attacks. The objective of the 2nd Competition on Counter Measures to 2D Face Spoofing Attacks is to challenge researchers to create counter measures effectively detecting a variety of attacks. The submitted propositions are evaluated on the Replay-Attack database and the achieved results are presented in this paper.The authors would like to thank the Swiss Innovation Agency (CTI Project Replay) and the FP7 European TABULA RASA Project4 (257289) for their financial support

    Meta-heuristic algorithms for optimized network flow wavelet-based image coding

    Get PDF
    Optimal multipath selection to maximize the received multiple description coding (MDCs) in a lossy network model is proposed. Multiple description scalar quantization (MDSQ) has been applied to the wavelet coefficients of a color image to generate the MDCs which are combating transmission loss over lossy networks. In the networks, each received description raises the reconstruction quality of an MDC-coded signal (image, audio or video). In terms of maximizing the received descriptions, a greater number of optimal routings between source and destination must be obtained. The rainbow network flow (RNF) collaborated with effective meta-heuristic algorithms is a good approach to resolve it. Two meta-heuristic algorithms which are genetic algorithm (GA) and particle swarm optimization (PSO) have been utilized to solve the multi-objective optimization routing problem for finding optimal routings each of which is assigned as a distinct color by RNF to maximize the coded descriptions in a network model. By employing a local search based priority encoding method, each individual in GA and particle in PSO is represented as a potential solution. The proposed algorithms are compared with the multipath Dijkstra algorithm (MDA) for both finding optimal paths and providing reliable multimedia communication. The simulations run over various random network topologies and the results show that the PSO algorithm finds optimal routings effectively and maximizes the received MDCs with assistance of RNF, leading to reduce packet loss and increase throughput

    Automatic nystagmus detection and quantification in long-term continuous eye-movement data

    Get PDF
    Symptoms of dizziness or imbalance are frequently reported by people over 65. Dizziness is usually episodic and can have many causes, making diagnosis problematic. When it is due to inner-ear malfunctions, it is usually accompanied by abnormal eye-movements called nystagmus. The CAVA (Continuous Ambulatory Vestibular Assessment) device has been developed to provide continuous monitoring of eye-movements to gain insight into the physiological parameters present during a dizziness attack. In this paper, we describe novel algorithms for detecting short periods of artificially induced nystagmus from the long-term eye movement data collected by the CAVA device. In a blinded trial involving 17 healthy subjects, each participant induced nystagmus artificially on up to eight occasions by watching a short video on a VR headset. Our algorithms detected these short periods with an accuracy of 98.77%. Additionally, data relating to vestibular induced nystagmus was collected, analysed and then compared to a conventional technique for assessing nystagmus during caloric testing. The results show that a range of nystagmus can be identified and quantified using computational methods applied to long-term eye-movement data captured by the CAVA device
    • …
    corecore