75 research outputs found

    Obesity Contributes to an Attenuated Spontaneous Baroreflex Sensitivity in UCD-Type 2 Diabetic Rats

    Get PDF
    Previous studies suggest impaired baroreflex function in individuals with type 2 diabetes (T2D), which is critically important since it leads to an increased risk for adverse cardiovascular events. Currently, the underlying mechanisms remain poorly understood. The baroreflex, essential for maintaining blood pressure homeostasis, can also be influenced by several risk factors, one of which is obesity. Obesity has been shown to markedly decrease baroreflex sensitivity (BRS) in non-diabetic individuals, and given that the majority of T2D patients are obese, it is likely that impairment in baroreflex function in T2D is mainly driven by obesity. PURPOSE: To investigate the effects of obesity on baroreflex function in T2D rats at different phases of the disease. We hypothesized that BRS would be attenuated in T2D rats, and this would be associated with increased adiposity. METHODS: Experiments were performed on male University of California Davis (UCD)-T2D rats assigned to four experimental groups (n=6 in each group): prediabetic (PD), diabetes-onset (DO), 4 weeks after onset [recent-onset (RO)], and 12 weeks after onset [late-onset (LO)]. Age-matched healthy Sprague-Dawley rats were assigned to the same experimental groups as controls (n=6 in each). Rats were anesthetized and blood pressure was directly measured for 5 min. Hemodynamic variables were obtained on a beat-to-beat basis and spontaneous BRS was assessed using the sequence technique. Dual-energy X-ray absorptiometry (DEXA) was used to assess body composition and visceral fat was determined by identifying an abdominal region of interest. Data are presented as mean ± SD. RESULTS: Spontaneous BRS was significantly lower in T2D compared to control rats at DO (3.7 ± 3.2 ms/mmHg vs 16.1 ± 8.4 ms/mmHg; P=0.01). However, this difference was abolished by LO (13.4 ± 8.1 ms/mmHg vs 9.2 ± 6.0 ms/mmHg; P=0.16). T2D rats had the highest level of adiposity during the RO phase but it significantly decreased by LO (PD: 136 ± 14 g; DO: 175 ± 24 g; RO: 207 ± 44 g; LO: 163 ± 45 g; P=0.03). In addition, T2D rats had greater visceral fat compared to control rats regardless of the disease phase (P\u3c0.01). CONCLUSION: These findings suggest that obesity may contribute to an attenuated spontaneous BRS in T2D rats and suggests a link between metabolic and autonomic dysfunction in T2D

    Ba4Ru3O10.2(OH)1.8 : a new member of the layered hexagonal perovskite family crystallised from water

    Get PDF
    A new barium ruthenium oxyhydroxide Ba4Ru3O10.2(OH)1.8 crystallises under hydrothermal conditions at 200 °C: powder neutron diffraction data show it adopts an 8H hexagonal perovskite structure with a new stacking sequence, while high resolution electron microscopy reveals regions of ordered layers of vacant Ru sites, and magnetometry shows antiferromagnetism with TN = 200(5) K

    Transcriptome Analysis of Mouse Stem Cells and Early Embryos

    Get PDF
    Understanding and harnessing cellular potency are fundamental in biology and are also critical to the future therapeutic use of stem cells. Transcriptome analysis of these pluripotent cells is a first step towards such goals. Starting with sources that include oocytes, blastocysts, and embryonic and adult stem cells, we obtained 249,200 high-quality EST sequences and clustered them with public sequences to produce an index of approximately 30,000 total mouse genes that includes 977 previously unidentified genes. Analysis of gene expression levels by EST frequency identifies genes that characterize preimplantation embryos, embryonic stem cells, and adult stem cells, thus providing potential markers as well as clues to the functional features of these cells. Principal component analysis identified a set of 88 genes whose average expression levels decrease from oocytes to blastocysts, stem cells, postimplantation embryos, and finally to newborn tissues. This can be a first step towards a possible definition of a molecular scale of cellular potency. The sequences and cDNA clones recovered in this work provide a comprehensive resource for genes functioning in early mouse embryos and stem cells. The nonrestricted community access to the resource can accelerate a wide range of research, particularly in reproductive and regenerative medicine

    Directed Evolution Generates a Novel Oncolytic Virus for the Treatment of Colon Cancer

    Get PDF
    Background Viral-mediated oncolysis is a novel cancer therapeutic approach with the potential to be more effective and less toxic than current therapies due to the agents selective growth and amplification in tumor cells. To date, these agents have been highly safe in patients but have generally fallen short of their expected therapeutic value as monotherapies. Consequently, new approaches to generating highly potent oncolytic viruses are needed. To address this need, we developed a new method that we term “Directed Evolution” for creating highly potent oncolytic viruses. Methodology/Principal Findings Taking the “Directed Evolution” approach, viral diversity was increased by pooling an array of serotypes, then passaging the pools under conditions that invite recombination between serotypes. These highly diverse viral pools were then placed under stringent directed selection to generate and identify highly potent agents. ColoAd1, a complex Ad3/Ad11p chimeric virus, was the initial oncolytic virus derived by this novel methodology. ColoAd1, the first described non-Ad5-based oncolytic Ad, is 2–3 logs more potent and selective than the parent serotypes or the most clinically advanced oncolytic Ad, ONYX-015, in vitro. ColoAd1's efficacy was further tested in vivo in a colon cancer liver metastasis xenograft model following intravenous injection and its ex vivo selectivity was demonstrated on surgically-derived human colorectal tumor tissues. Lastly, we demonstrated the ability to arm ColoAd1 with an exogenous gene establishing the potential to impact the treatment of cancer on multiple levels from a single agent. Conclusions/Significance Using the “Directed Evolution” methodology, we have generated ColoAd1, a novel chimeric oncolytic virus. In vitro, this virus demonstrated a >2 log increase in both potency and selectivity when compared to ONYX-015 on colon cancer cells. These results were further supported by in vivo and ex vivo studies. Furthermore, these results have validated this methodology as a new general approach for deriving clinically-relevant, highly potent anti-cancer virotherapies

    Disorders of sex development : insights from targeted gene sequencing of a large international patient cohort

    Get PDF
    Background: Disorders of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. Clinical management of DSD is often difficult and currently only 13% of patients receive an accurate clinical genetic diagnosis. To address this we have developed a massively parallel sequencing targeted DSD gene panel which allows us to sequence all 64 known diagnostic DSD genes and candidate genes simultaneously. Results: We analyzed DNA from the largest reported international cohort of patients with DSD (278 patients with 46, XY DSD and 48 with 46, XX DSD). Our targeted gene panel compares favorably with other sequencing platforms. We found a total of 28 diagnostic genes that are implicated in DSD, highlighting the genetic spectrum of this disorder. Sequencing revealed 93 previously unreported DSD gene variants. Overall, we identified a likely genetic diagnosis in 43% of patients with 46, XY DSD. In patients with 46, XY disorders of androgen synthesis and action the genetic diagnosis rate reached 60%. Surprisingly, little difference in diagnostic rate was observed between singletons and trios. In many cases our findings are informative as to the likely cause of the DSD, which will facilitate clinical management. Conclusions: Our massively parallel sequencing targeted DSD gene panel represents an economical means of improving the genetic diagnostic capability for patients affected by DSD. Implementation of this panel in a large cohort of patients has expanded our understanding of the underlying genetic etiology of DSD. The inclusion of research candidate genes also provides an invaluable resource for future identification of novel genes

    Functional dissection of inherited non-coding variation influencing multiple myeloma risk

    Get PDF
    Funding Information: This work was supported by grants from the Knut and Alice Wallenberg Foundation (2012.0193 and 2017.0436), the Swedish Research Council (2017-02023 and 2018-00424), the Swedish Cancer Society (2017/265), the Nordic Cancer Union (R217-A13329-18-S65), Arne and Inga-Britt Lundberg’s Stiftelse (2017-0055), European Research Council (EU-MSCA-COFUND 754299 CanFaster), Myeloma UK and Cancer Research UK (C1298/A8362), The National Institute of Health (R01 DK103794 and R01HL146500), the New York Stem Cell Foundation, a gift from the Lodish Family to Boston Children’s Hospital, and Mr. Ralph Stockwell. We thank Ellinor Johnsson for her assistance between 2011 and 2020. We are indebted to the patients who participated in the study. Publisher Copyright: © 2022, The Author(s).Thousands of non-coding variants have been associated with increased risk of human diseases, yet the causal variants and their mechanisms-of-action remain obscure. In an integrative study combining massively parallel reporter assays (MPRA), expression analyses (eQTL, meQTL, PCHiC) and chromatin accessibility analyses in primary cells (caQTL), we investigate 1,039 variants associated with multiple myeloma (MM). We demonstrate that MM susceptibility is mediated by gene-regulatory changes in plasma cells and B-cells, and identify putative causal variants at six risk loci (SMARCD3, WAC, ELL2, CDCA7L, CEP120, and PREX1). Notably, three of these variants co-localize with significant plasma cell caQTLs, signaling the presence of causal activity at these precise genomic positions in an endogenous chromosomal context in vivo. Our results provide a systematic functional dissection of risk loci for a hematologic malignancy.Peer reviewe

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∌38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Common variants in WFS1 confer risk of type 2 diabetes

    Get PDF
    We studied genes involved in pancreatic beta cell function and survival, identifying associations between SNPs in WFS1 and diabetes risk in UK populations that we replicated in an Ashkenazi population and in additional UK studies. In a pooled analysis comprising 9,533 cases and 11,389 controls, SNPs in WFS1 were strongly associated with diabetes risk. Rare mutations in WFS1 cause Wolfram syndrome; using a gene-centric approach, we show that variation in WFS1 also predisposes to common type 2 diabetes
    • 

    corecore