51 research outputs found

    Options to correct local turbulent flux measurements for large-scale fluxes using an approach based on large-eddy simulation

    Get PDF
    The eddy-covariance method provides the most direct estimates for fluxes between ecosystems and the atmosphere. However, dispersive fluxes can occur in the presence of secondary circulations, which can inherently not be captured by such single-tower measurements. In this study, we present options to correct local flux measurements for such large-scale transport based on a non-local parametric model that has been developed from a set of idealized large-eddy simulations. This method is tested for three real-world sites (DK-Sor, DE-Fen, and DE-Gwg), representing typical conditions in the mid-latitudes with different measurement heights, different terrain complexities, and different landscape-scale heterogeneities. Two ways to determine the boundary-layer height, which is a necessary input variable for modelling the dispersive fluxes, are applied, which are either based on operational radio soundings and local in situ measurements for the flat sites or from backscatter-intensity profiles obtained from co-located ceilometers for the two sites in complex terrain. The adjusted total fluxes are evaluated by assessing the improvement in energy balance closure and by comparing the resulting latent heat fluxes with evapotranspiration rates from nearby lysimeters. The results show that not only the accuracy of the flux estimates is improved but also the precision, which is indicated by RMSE values that are reduced by approximately 50 %. Nevertheless, it needs to be clear that this method is intended to correct for a bias in eddy-covariance measurements due to the presence of large-scale dispersive fluxes. Other reasons potentially causing a systematic underestimated or overestimation, such as low-pass filtering effects and missing storage terms, still need to be considered and minimized as much as possible. Moreover, additional transport induced by surface heterogeneities is not considered

    A European perspective on auditory processing disorder-current knowledge and future research focus

    Get PDF
    Current notions of \u201chearing impairment,\u201d as reflected in clinical audiological practice, do not acknowledge the needs of individuals who have normal hearing pure tone sensitivity but who experience auditory processing difficulties in everyday life that are indexed by reduced performance in other more sophisticated audiometric tests such as speech audiometry in noise or complex non-speech sound perception. This disorder, defined as \u201cAuditory Processing Disorder\u201d (APD) or \u201cCentral Auditory Processing Disorder\u201d is classified in the current tenth version of the International Classification of diseases as H93.25 and in the forthcoming beta eleventh version. APDs may have detrimental effects on the affected individual, with low esteem, anxiety, and depression, and symptoms may remain into adulthood. These disorders may interfere with learning per se and with communication, social, emotional, and academic-work aspects of life. The objective of the present paper is to define a baseline European APD consensus formulated by experienced clinicians and researchers in this specific field of human auditory science. A secondary aim is to identify issues that future research needs to address in order to further clarify the nature of APD and thus assist in optimumdiagnosis and evidence-based management. This European consensus presents the main symptoms, conditions, and specific medical history elements that should lead to auditory processing evaluation. Consensus on definition of the disorder, optimum diagnostic pathway, and appropriate management are highlighted alongside a perspective on future research focus

    High-resolution drought simulations and comparison to soil moisture observations in Germany

    Get PDF
    Germany\u27s 2018–2020 consecutive drought events resulted in multiple sectors – including agriculture, forestry, water management, energy production, and transport – being impacted. High-resolution information systems are key to preparedness for such extreme drought events. This study evaluates the new setup of the one-kilometer German drought monitor (GDM), which is based on daily soil moisture (SM) simulations from the mesoscale hydrological model (mHM). The simulated SM is compared against a set of diverse observations from single profile measurements, spatially distributed sensor networks, cosmic-ray neutron stations, and lysimeters at 40 sites in Germany. Our results show that the agreement of simulated and observed SM dynamics in the upper soil (0–25 cm) are especially high in the vegetative active period (0.84 median correlation R) and lower in winter (0.59 median R). The lower agreement in winter results from methodological uncertainties in both simulations and observations. Moderate but significant improvements between the coarser 4 km resolution setup and the ≈ 1.2 km resolution GDM in the agreement to observed SM dynamics is observed in autumn (+0.07 median R) and winter (+0.12 median R). Both model setups display similar correlations to observations in the dry anomaly spectrum, with higher overall agreement of simulations to observations with a larger spatial footprint. The higher resolution of the second GDM version allows for a more detailed representation of the spatial variability of SM, which is particularly beneficial for local risk assessments. Furthermore, the results underline that nationwide drought information systems depend both on appropriate simulations of the water cycle and a broad, high-quality, observational soil moisture database

    A dense network of cosmic-ray neutron sensors for soil moisture observation in a highly instrumented pre-Alpine headwater catchment in Germany

    Get PDF
    Monitoring soil moisture is still a challenge: it varies strongly in space and time and at various scales while conventional sensors typically suffer from small spatial support. With a sensor footprint up to several hectares, cosmic-ray neutron sensing (CRNS) is a modern technology to address that challenge. So far, the CRNS method has typically been applied with single sensors or in sparse national-scale networks. This study presents, for the first time, a dense network of 24 CRNS stations that covered, from May to July 2019, an area of just 1 km2: the pre-Alpine Rott headwater catchment in Southern Germany, which is characterized by strong soil moisture gradients in a heterogeneous landscape with forests and grasslands. With substantially overlapping sensor footprints, this network was designed to study root-zone soil moisture dynamics at the catchment scale. The observations of the dense CRNS network were complemented by extensive measurements that allow users to study soil moisture variability at various spatial scales: roving (mobile) CRNS units, remotely sensed thermal images from unmanned areal systems (UASs), permanent and temporary wireless sensor networks, profile probes, and comprehensive manual soil sampling. Since neutron counts are also affected by hydrogen pools other than soil moisture, vegetation biomass was monitored in forest and grassland patches, as well as meteorological variables; discharge and groundwater tables were recorded to support hydrological modeling experiments. As a result, we provide a unique and comprehensive data set to several research communities: to those who investigate the retrieval of soil moisture from cosmic-ray neutron sensing, to those who study the variability of soil moisture at different spatiotemporal scales, and to those who intend to better understand the role of root-zone soil moisture dynamics in the context of catchment and groundwater hydrology, as well as land–atmosphere exchange processes. The data set is available through the EUDAT Collaborative Data Infrastructure and is split into two subsets: https://doi.org/10.23728/b2share.282675586fb94f44ab2fd09da0856883 (Fersch et al., 2020a) and https://doi.org/10.23728/b2share.bd89f066c26a4507ad654e994153358b (Fersch et al., 2020b)

    Comparing the clinical effectiveness of different new-born hearing screening strategies. A decision analysis

    Get PDF
    BACKGROUND: Children with congenital hearing impairment benefit from early detection and treatment. At present, no model exists which explicitly quantifies the effectiveness of universal newborn hearing screening (UNHS) versus other programme alternatives in terms of early diagnosis. It has yet to be considered whether early diagnosis (within the first few months) of hearing impairment is of importance with regard to the further development of the child compared with effects resulting from a later diagnosis. The objective was to systematically compare two screening strategies for the early detection of new-born hearing disorders, UNHS and risk factor screening, with no systematic screening regarding their influence on early diagnosis. METHODS: Design: Clinical effectiveness analysis using a Markov Model. Data Sources: Systematic literature review, empirical data survey, and expert opinion. Target Population: All newborn babies. Time scale: 6, 12 and 120 months. Perspective: Health care system. Compared Strategies: UNHS, Risk factor screening (RS), no systematic screening (NS). Outcome Measures: Quality weighted detected child months (QCM). RESULTS: UNHS detected 644 QCM up until the age of 6 months (72,2%). RS detected 393 child months (44,1%) and no systematic screening 152 child months (17,0%). UNHS detected 74,3% and 86,7% weighted child months at 12 and 120 months, RS 48,4% and 73,3%, NS 23,7% and 60,6%. At the age of 6 months UNHS identified approximately 75% of all children born with hearing impairment, RS 50% and NS 25%. At the time of screening UNHS marked 10% of screened healthy children for further testing (false positives), RS 2%. UNHS demonstrated higher effectiveness even under a wide range of relevant parameters. The model was insensitive to test parameters within the assumed range but results varied along the prevalence of hearing impairment. CONCLUSION: We have shown that UNHS is able to detect hearing impairment at an earlier age and more accurately than selective RS. Further research should be carried out to establish the effects of hearing loss on the quality of life of an individual, its influence on school performance and career achievement and the differences made by early fitting of a hearing aid on these factors

    Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe's terrestrial ecosystems : a review

    Get PDF
    Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System combines carbon and greenhouse gas (GHG; CO2, CH4, N2O, H2O) observations within the atmosphere, terrestrial ecosystems and oceans. High-precision measurements are obtained using standardised methodologies, are centrally processed and openly available in a traceable and verifiable fashion in combination with detailed metadata. The Integrated Carbon Observation System ecosystem station network aims to sample climate and land-cover variability across Europe. In addition to GHG flux measurements, a large set of complementary data (including management practices, vegetation and soil characteristics) is collected to support the interpretation, spatial upscaling and modelling of observed ecosystem carbon and GHG dynamics. The applied sampling design was developed and formulated in protocols by the scientific community, representing a trade-off between an ideal dataset and practical feasibility. The use of open-access, high-quality and multi-level data products by different user communities is crucial for the Integrated Carbon Observation System in order to achieve its scientific potential and societal value.Peer reviewe

    Building the Policy Ecosystem in Europe for Cultivation and Use of Perennial Biomass Crops

    Get PDF
    Perennial biomass crops (PBCs) can potentially contribute to all ten Common Agricultural Policy (2023-27) objectives and up to eleven of the seventeen UN Sustainable Development Goals. This paper discusses interlinked issues that must be considered in the expansion of PBC production: i) available land; ii) yield potential; iii) integration into farming systems; iv) research and development requirements; v) utilisation options; and vi) market systems and the socio-economic environment. The challenge to create development pathways that are acceptable for all actors, relies on measurement, reporting and verification of greenhouse gas emissions reduction in combination with other environmental, economic and social aspects. This paper makes the following policy recommendations to enable greater PBC deployment: 1) incentivise farmers and land managers through specific policy measures, including carbon pricing, to allocate their less productive and less profitable land for uses which deliver demonstrable greenhouse gas reductions; 2) enable greenhouse gas mitigation markets to develop and offer secure contracts for commercial developers of verifiable low carbon bioenergy and bio-products; 3) support innovation in biomass utilisation value chains; and 4) continue long-term, strategic research and development and education for positive environmental, economic and social sustainability impacts. © 2023 ETA-Florence Renewable Energies

    Effects of climate input data aggregation on modelling regional crop yields

    Get PDF
    Crop models can be sensitive to climate input data aggregation and this response may differ among models. This should be considered when applying field-scale models for assessment of climate change impacts on larger spatial scales or when coupling models across scales. In order to evaluate these effects systematically, an ensemble of ten crop models was run with climate input data on different spatial aggregations ranging from 1, 10, 25, 50 and 100 km horizontal resolution for the state of North Rhine-Westphalia, Germany. Models were minimally calibrated to typical sowing and harvest dates, and crop yields observed in the region, subsequently simulating potential, water-limited and nitrogen-limited production of winter wheat and silage maize for 1982-2011. Outputs were analysed for 19 variables (yield, evapotranspiration, soil organic carbon, etc.). In this study the sensitivity of the individual models and the model ensemble in response to input data aggregation is assessed for crop yield. Results show that the mean yield of the region calculated from climate time series of 1 km horizontal resolution changes only little when using climate input data of higher aggregation levels for most models. However, yield frequency distributions change with aggregation, resembling observed data better with increasing resolution. With few exceptions, these results apply to the two crops and three production situations (potential, water-, nitrogen-limited) and across models including the model ensemble, regardless of differences among models in simulated yield levels and spatial yield patterns. Results of this study improve the confidence of using crop models at varying scales

    The feeding tube of cyst nematodes: characterisation of protein exclusion

    Get PDF
    Plant parasitic nematodes comprise several groups; the most economically damaging of these are the sedentary endoparasites. Sedentary endoparasitic nematodes are obligate biotrophs and modify host root tissue, using a suite of effector proteins, to create a feeding site that is their sole source of nutrition. They feed by withdrawing host cell assimilate from the feeding site though a structure known as the feeding tube. The function, composition and molecular characteristics of feeding tubes are poorly characterised. It is hypothesised that the feeding tube facilitates uptake of host cell assimilate by acting as a molecular sieve. Several studies, using molecular mass as the sole indicator of protein size, have given contradictory results about the exclusion limits of the cyst nematode feeding tube. In this study we propose a method to predict protein size, based on protein database coordinates in silico. We tested the validity of these predictions using travelling wave ion mobility spectrometry--mass spectrometry, where predictions and measured values were within approximately 6%. We used the predictions, coupled with mass spectrometry, analytical ultracentrifugation and protein electrophoresis, to resolve previous conflicts and define the exclusion characteristics of the cyst nematode feeding tube. Heterogeneity was tested in the liquid, solid and gas phase to provide a comprehensive evaluation of three proteins of particular interest to feeding tube size exclusion, GFP, mRFP and Dual PI. The data and procedures described here could be applied to the design of plant expressed defence compounds intended for uptake into cyst nematodes. We also highlight the need to assess protein heterogeneity when creating novel fusion proteins
    • …
    corecore