16 research outputs found

    Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems

    Get PDF
    Soils are warming as air temperatures rise across the Arctic and Boreal region concurrent with the expansion of tall-statured shrubs and trees in the tundra. Changes in vegetation structure and function are expected to alter soil thermal regimes, thereby modifying climate feedbacks related to permafrost thaw and carbon cycling. However, current understanding of vegetation impacts on soil temperature is limited to local or regional scales and lacks the generality necessary to predict soil warming and permafrost stability on a pan-Arctic scale. Here we synthesize shallow soil and air temperature observations with broad spatial and temporal coverage collected across 106 sites representing nine different vegetation types in the permafrost region. We showed ecosystems with tall-statured shrubs and trees (>40 cm) have warmer shallow soils than those with short-statured tundra vegetation when normalized to a constant air temperature. In tree and tall shrub vegetation types, cooler temperatures in the warm season do not lead to cooler mean annual soil temperature indicating that ground thermal regimes in the cold-season rather than the warm-season are most critical for predicting soil warming in ecosystems underlain by permafrost. Our results suggest that the expansion of tall shrubs and trees into tundra regions can amplify shallow soil warming, and could increase the potential for increased seasonal thaw depth and increase soil carbon cycling rates and lead to increased carbon dioxide loss and further permafrost thaw

    Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas

    Get PDF
    Dynamics of the submarine permafrost regime, including distribution, thickness, and temporal evolution, was modeled for the Laptev and East Siberian Sea shelf zones. This work included simulation of the permafrost-related gas hydrate stability zone (GHSZ). Simulations were compared with field observations. Model sensitivity runs were performed using different boundary conditions, including a variety of geological conditions as well as two distinct geothermal heat flows (45 and 70 mW/m2). The heat flows used are typical for the coastal lowlands of the Laptev Sea and East Siberian Sea. Use of two different geological deposits, that is, unconsolidated Cainozoic strata and solid bedrock, resulted in the significantly different magnitudes of permafrost thickness, a result of their different physical and thermal properties. Both parameters, the thickness of the submarine permafrost on the shelf and the related development of the GHSZ, were simulated for the last four glacial-eustatic cycles (400,000 years). The results show that the most recently formed permafrost is continuous to the 60-m isobath; at the greater depths of the outer part of the shelf it changes to discontinuous and “patchy” permafrost. However, model results suggest that the entire Arctic shelf is underlain by relic permafrost in a state stable enough for gas hydrates. Permafrost, as well as the GHSZ, is currently storing probable significant greenhouse gas sources, especially methane that has formed by the decomposition of gas hydrates at greater depth. During climate cooling and associated marine regression, permafrost aggradation takes place due to the low temperatures and the direct exposure of the shelf to the atmosphere. Permafrost degradation takes place during climate warming and marine transgression. However, the temperature of transgressing seawater in contact with the former terrestrial permafrost landscape remains below zero, ranging from −0.5 to −1.8°C, meaning permafrost degradation does not immediately occur. The submerged permafrost degrades slowly, undergoing a transformation in form from ice bonded terrestrial permafrost to ice bearing submarine permafrost that does not possess a temperature gradient. Finally the thickness of ice bearing permafrost decreases from its lower boundary due to the geothermal heat flow. The modeling indicated several other features. There exists a time lag between extreme states in climatic forcing and associated extreme states of permafrost thickness. For example, permafrost continued to degrade for up to 10,000 years following a temperature decline had begun after a climate optimum. Another result showed that the dynamic of permafrost thickness and the variation of the GHSZ are similar but not identical. For example, it can be shown that in recent time permafrost degradation has taken place at the outer part of the shelf whereas the GHSZ is stable or even thickening

    A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch

    No full text
    Thermokarst lakes formed across vast regions of Siberia and Alaska during the last deglaciation and are thought to be a net source of atmospheric methane and carbon dioxide during the Holocene epoch1–4. However, the same thermokarstlakes can also sequester carbon5 , and it remains uncertain whether carbon uptake by thermokarst lakes can offset their greenhouse gas emissions. Here we use field observations of Siberian permafrost exposures, radiocarbon dating and spatial analyses to quantify Holocene carbon stocks and fluxes in lake sediments overlying thawed Pleistocene-aged permafrost.We find that carbon accumulationin deep thermokarst-lake sediments since thelast deglaciationis about 1.6 times larger than the mass of Pleistocene-aged permafrost carbon released as greenhouse gases when the lakes first formed. Although methane and carbon dioxide emissions following thaw lead toimmediate radiative warming, carbon uptakein peat-rich sediments occurs over millennial timescales. We assess thermokarstlake carbon feedbacks to climate with an atmospheric perturbation model and find that thermokarst basins switched from a net radiative warming to a net cooling climate effect about 5,000 years ago. High rates of Holocene carbon accumulation in 20 lake sediments (47 6 10 grams of carbon per square metre per year; mean 6 standard error) were driven by thermokarst erosion and deposition of terrestrial organic matter, by nutrient release from thawing permafrost that stimulatedlake productivity and by slow decompositionin cold, anoxic lake bottoms.When lakes eventually drained, permafrost formation rapidly sequestered sediment carbon. Our estimate of about 160 petagrams of Holocene organic carbon in deep lake basins of Siberia and Alaska increases the circumpolar peat carbon pool estimate for permafrost regions by over 50 per cent (ref. 6). The carbon in perennially frozen drained lake sediments may become vulnerable to mineralization as permafrost disappears7–9, potentially negating the climate stabilization provided by thermokarst lakes during the late Holocene

    A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch

    No full text
    Thermokarst lakes formed across vast regions of Siberia and Alaska during the last deglaciation and are thought to be a net source of atmospheric methane and carbon dioxide during the Holocene epoch1, 2, 3, 4. However, the same thermokarst lakes can also sequester carbon5, and it remains uncertain whether carbon uptake by thermokarst lakes can offset their greenhouse gas emissions. Here we use field observations of Siberian permafrost exposures, radiocarbon dating and spatial analyses to quantify Holocene carbon stocks and fluxes in lake sediments overlying thawed Pleistocene-aged permafrost. We find that carbon accumulation in deep thermokarst-lake sediments since the last deglaciation is about 1.6 times larger than the mass of Pleistocene-aged permafrost carbon released as greenhouse gases when the lakes first formed. Although methane and carbon dioxide emissions following thaw lead to immediate radiative warming, carbon uptake in peat-rich sediments occurs over millennial timescales. We assess thermokarst-lake carbon feedbacks to climate with an atmospheric perturbation model and find that thermokarst basins switched from a net radiative warming to a net cooling climate effect about 5,000 years ago. High rates of Holocene carbon accumulation in 20 lake sediments (47 ± 10 grams of carbon per square metre per year; mean ± standard error) were driven by thermokarst erosion and deposition of terrestrial organic matter, by nutrient release from thawing permafrost that stimulated lake productivity and by slow decomposition in cold, anoxic lake bottoms. When lakes eventually drained, permafrost formation rapidly sequestered sediment carbon. Our estimate of about 160 petagrams of Holocene organic carbon in deep lake basins of Siberia and Alaska increases the circumpolar peat carbon pool estimate for permafrost regions by over 50 per cent (ref. 6). The carbon in perennially frozen drained lake sediments may become vulnerable to mineralization as permafrost disappears7, 8, 9, potentially negating the climate stabilization provided by thermokarst lakes during the late Holocene
    corecore