74 research outputs found

    Effects of salt stress on micropropagation of potato (Solanum tuberosum L.)

    Get PDF
    Six cultivars of potato (Solanum tuberosum L.) Bartina, Spunta, Cardinal, Desirée, Timate and Fabula were assayed in vitro for salinity (NaCl) tolerance. A modified single-node cuttiang bioassay was used in which cultivars were exposed to a range of NaCl levels (0, 40, 80 and 120 Mm), in a Murashige and Skoog medium, for 1 month. Evaluations were performed twice for each cultivar at each salt level. Six vegetative growth parameters (shoot and root length, fresh and dry weights) were measured at the time of harvest and corrected for differences in cultivar vigor. Fresh weight of shoot and length of shoot decreased by given range levels of NaCl. The effect of all treatments was very drastic on length and weight of root. The cultivar Bartina exhibited greater tolerance to the highest salt doses. Plants of this cultivar had greater shoot length than other cultivars at all salt concentrations tested. The results indicated that cultivar "Bartina" is more salt tolerant than other cultivars studied.Key words: Potato, Solanum tuberosum L, salinity, in vitro, micropropagation

    Exploitation of somaclonal variability for the search of saline-tolerant potato (Solanum Tuberosum L.)

    Get PDF
    The present investigation was conducted with an aim to study the effect of salt stress (NaCl) on in vitro potato callus growth and the potential for exploiting this technique in improving salinity tolerance in potato. The results in the four varieties in the culture medium showed a decrease in all studied parameters like callus growth, relative average growth, water content and salinity sensitivity coefficient upon increasing the salinity of the medium in calluses. It has also been observed that the type of callus has a large effect on the above-mentioned parameters in which better callus growth adapted to 150 mmol NaCl is obtained than unsuitable calli in the same culture medium

    HPTLC determination of diosgenin in fenugreek seeds

    Get PDF
    A new HPTLC-densitometric method for diosgenin determination in fenugreek seeds was established after optimization of the conditions for efficient saponin extraction and acid hydrolysis. Several procedures were tested, the best of which was a three-step Soxhlet extraction, followed by hydrolysis of the obtained methanolic extract with 2 mol L–1 H2SO4. Best diosgenin separation from other hydrolysis products was obtained on HPTLC Si60F254 plates using a mixture of n-heptane/ethyl acetate (7:3, V/V) and modified anisaldehyde as a spraying reagent. The method was preliminarily validated and the determined amounts of diosgenin in fenugreek seeds of Polish and African origin were found to be similar and ranged from 0.12–0.18 %

    On the behaviour of Atrazine removal from water using fabrics as anodes and Cathodes

    Full text link
    [EN] This study examines the degradation of atrazine (ATZ) with Pt-modified textile electrodes using an electrochemical method that is comparatively studied in two electrochemical cell configurations: cells with separated anodic and cathodic compartments (divided configuration); and without any separation (undivided configuration). The influence of the presence of chloride ions was studied. The best results were obtained when an undivided cell was used. The morphology and composition of the dispersed Pt coatings were analyzed using field emission scanning electron microscopy (FESEM) and Energy Dispersive X-Ray Analysis. The FESEM analyses confirmed that the textile surface was effectively modified by the electrocatalytic material. High performance liquid chromatography, gas chromatography mass spectrometry, and spectroscopic methods were used to follow the evolution of major oxidation products. Total organic carbon, chemical oxygen demand, and total nitrogen were used to evaluate the degradation efficiency of treated aqueous solutions. The experimental results obtained indicate that the efficiency of the electrochemical treatment was high with a low energy consumption when using electrodes based on textile materials, such as anodes or as cathodes (in particular, in electrolysis without compartment separation). All these can be produced at very competitive pricesSpanish Agencia Estatal de Investigacion (AEI) and European Union (FEDER funds) are acknowledged for the financial support (contracts MAT 2016-77742-C2-1-P and CTQ 2017-90659-RED). Chemviron Carbon who kindly donated the FlexzorbTM FM10 activated carbon fabrics and Funding for open access charge, CRUE-Universitat Politècnica de València, are acknowledged tooHamous, H.; Khenifi, A.; Orts Maiques, FJ.; Bonastre Cano, JA.; Cases, F. (2022). On the behaviour of Atrazine removal from water using fabrics as anodes and Cathodes. Chemosphere. 291(Part 1):1-8. https://doi.org/10.1016/j.chemosphere.2021.132738S18291Part

    Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique

    Full text link
    Pulsed voltammetry has been used to detect and quantify glyphosate on buffered water in presence of ammonium nitrate and humic substances. Glyphosate is the most widely used herbicide active ingredient in the world. It is a non-selective broad spectrum herbicide but some of its health and environmental effects are still being discussed. Nowadays, glyphosate pollution in water is being monitored but quantification techniques are slow and expensive. Glyphosate wastes are often detected in countryside water bodies where organic substances and fertilizers (commonly based on ammonium nitrate) may also be present. Glyphosate also forms complexes with humic acids so these compounds have also been taken into consideration. The objective of this research is to study the interference of these common pollutants in glyphosate measurements by pulsed voltammetry. The statistical treatment of the voltammetric data obtained lets us discriminate glyphosate from the other studied compounds and a mathematical model has been built to quantify glyphosate concentrations in a buffer despite the presence of humic substances and ammonium nitrate. In this model, the coefficient of determination (R-2) is 0.977 and the RMSEP value is 2.96 x 10(-5) so the model is considered statistically valid. (C) 2013 Elsevier B.V. All rights reserved.Authors acknowledge financial support from the Universitat Polltecnica de Valencia and its Centre de Cooperacio al Desenvolupament (Programa ADSIDEO-COOPERACIO 2010) for the research fellowship. We also thank MICINN (MAT2012-38429-C04-04) and GVA (PPC/2011/019) for their respective research fellowships.Martínez Gil, P.; Laguarda Miró, N.; Soto Camino, J.; Masot Peris, R. (2013). Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique. Talanta. (115):702-705. https://doi.org/10.1016/j.talanta.2013.06.030S70270511

    Recent Trends in Monitoring of European Water Framework Directive Priority Substances Using Micro-Sensors: A 2007–2009 Review

    Get PDF
    This review discusses from a critical perspective the development of new sensors for the measurement of priority pollutants targeted in the E.U. Water Framework Directive. Significant advances are reported in the paper and their advantages and limitations are also discussed. Future perspectives in this area are also pointed out in the conclusions. This review covers publications appeared since December 2006 (the publication date of the Swift report). Among priority substances, sensors for monitoring the four WFD metals represent 81% of published papers. None of analyzed publications present a micro-sensor totally validated in laboratory, ready for tests under real conditions in the field. The researches are mainly focused on the sensing part of the micro-sensors. Nevertheless, the main factor limiting micro-sensor applications in the environment is the ruggedness of the receptor towards environmental conditions. This point constitutes the first technological obstacle to be overcome for any long-term field tests

    Glyphosate detection by voltammetric techniques. A comparison between statistical methods and an artificial neural network

    Full text link
    Glyphosate quantification methods are complex and expensive, and its control in natural water bodies is getting more important year after year. In order to find a new system that facilitates the detection of glyphosate, we present a comparison between two models to predict glyphosate concentration in aqueous dissolutions. One of them is done by an artificial neural network (ANN) embedded in a microcontroller and the other one is done by statistic methods (Partial Least Squares) in a computer. From an analytical point of view, voltammetric techniques have been selected to obtain electrochemical responses to different glyphosate concentrations. In order to get them, a voltammetry/amperometry device designed by our research group and called FraPlus has been used. In this work we have selected two sensitive electrodes (cobalt and copper), 10 different glyphosate concentrations and a train pulse made by nine different voltammetric pulses to build the models. The ANN developed model is able to properly relate data obtained by FraPlus and glyphosate concentrations and the obtained value for regression coefficient (R) is 0.9998 and the P-value is 0.0. Taking into account these results, we propose this ANN model based in voltammetric techniques working with glyphosate concentrations in a buffer as an approach to glyphosate detection in natural water bodies.Authors acknowledge financial support from the Universitat Politecnica de Valencia and its Centre de Cooperacio al Desenvolupament (Programa ADSIDEO-COOPERACIO 2010) for the research fellowship and support given by UNIJUI University & Staff during the stage of Prof. Laguarda in Ijui (RS-Brazil). We also thank MICINN (MAT2009-14564-C04-02) and GVA (PPC/2011/019) for their respective research fellowships.Laguarda-Miro, N.; Werner Ferreira, F.; Garcia-Breijo, E.; Ibáñez Civera, FJ.; Gil Sánchez, L.; Garrigues Baixauli, J. (2012). Glyphosate detection by voltammetric techniques. A comparison between statistical methods and an artificial neural network. Sensors and Actuators B: Chemical. 171-172:528-536. https://doi.org/10.1016/j.snb.2012.05.025S528536171-17

    Glyphosate Detection by Means of a Voltammetric Electronic Tongue and Discrimination of Potential Interferents

    Get PDF
    A new electronic tongue to monitor the presence of glyphosate (a non-selective systemic herbicide) has been developed. It is based on pulse voltammetry and consists in an array of three working electrodes (Pt, Co and Cu) encapsulated on a methacrylate cylinder. The electrochemical response of the sensing array was characteristic of the presence of glyphosate in buffered water (phosphate buffer 0.1 mol·dm-3, pH 6.7). Rotating disc electrode (RDE) studies were carried out with Pt, Co and Cu electrodes in water at room temperature and at pH 6.7 using 0.1 mol·dm-3 of phosphate as a buffer. In the presence of glyphosate, the corrosion current of the Cu and Co electrodes increased significantly, probably due to the formation of Cu2+ or Co2+ complexes. The pulse array waveform for the voltammetric tongue was designed by taking into account some of the redox processes observed in the electrochemical studies. The PCA statistical analysis required four dimensions to explain 95% of variance. Moreover, a two-dimensional representation of the two principal components differentiated the water mixtures containing glyphosate. Furthermore, the PLS statistical analyses allowed the creation of a model to correlate the electrochemical response of the electrodes with glyphosate concentrations, even in the presence of potential interferents such as humic acids and Ca2+. The system offers a PLS prediction model for glyphosate detection with values of 098, -2.3 ¿ 10-5 and 0.94 for the slope, the intercept and the regression coefficient, respectively, which is in agreement with the good fit between the predicted and measured concentrations. The results suggest the feasibility of this system to help develop electronic tongues for glyphosate detection. © 2012 by the authors; licensee MDPI, Basel, Switzerland.Financial support from the Spanish Government (Project MAT2009-14564-C04-01 and PCI-Mediterraneo A/024590/09/A/ 03044/10), the Generalitat Valenciana (Project PROMETEO/2009/016), the UPV (project PAID-05-10) and its Centre de Cooperacio al Desenvolupament (Programa ADSIDEO-COOPERACIO 2010) is gratefully acknowledged.Bataller Prats, R.; Campos Sánchez, I.; Laguarda Miró, N.; Alcañiz Fillol, M.; Soto Camino, J.; Martínez Mañez, R.; Gil Sánchez, L.... (2012). Glyphosate Detection by Means of a Voltammetric Electronic Tongue and Discrimination of Potential Interferents. Sensors. 12:17553-17568. https://doi.org/10.3390/s121217553S175531756812Sierra, E. V., Méndez, M. A., Sarria, V. M., & Cortés, M. T. (2008). Electrooxidación de glifosato sobre electrodos de níquel y cobre. Química Nova, 31(2), 220-226. doi:10.1590/s0100-40422008000200006Sawchuk, J. W., Van Acker, R. C., & Friesen, L. F. (2006). Influence of a Range of Dosages of MCPA, Glyphosate, and Thifensulfuron: Tribenuron (2:1) on Conventional Canola (Brassica napus) and White Bean (Phaseolus vulgaris) Growth and Yield. Weed Technology, 20(1), 184-197. doi:10.1614/wt-05-064r1.1Gasnier, C., Dumont, C., Benachour, N., Clair, E., Chagnon, M.-C., & Séralini, G.-E. (2009). Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology, 262(3), 184-191. doi:10.1016/j.tox.2009.06.006Kataoka, H., Ryu, S., Sakiyama, N., & Makita, M. (1996). Simple and rapid determination of the herbicides glyphosate and glufosinate in river water, soil and carrot samples by gas chromatography with flame photometric detection. Journal of Chromatography A, 726(1-2), 253-258. doi:10.1016/0021-9673(95)01071-8MOTOJYUKU, M., SAITO, T., AKIEDA, K., OTSUKA, H., YAMAMOTO, I., & INOKUCHI, S. (2008). Determination of glyphosate, glyphosate metabolites, and glufosinate in human serum by gas chromatography–mass spectrometry. Journal of Chromatography B, 875(2), 509-514. doi:10.1016/j.jchromb.2008.10.003De Llasera, M. P. G., Gómez-Almaraz, L., Vera-Avila, L. E., & Peña-Alvarez, A. (2005). Matrix solid-phase dispersion extraction and determination by high-performance liquid chromatography with fluorescence detection of residues of glyphosate and aminomethylphosphonic acid in tomato fruit. Journal of Chromatography A, 1093(1-2), 139-146. doi:10.1016/j.chroma.2005.07.063Coutinho, C. F. B., Coutinho, L. F. M., Mazo, L. H., Nixdorf, S. L., & Camara, C. A. P. (2008). Rapid and direct determination of glyphosate and aminomethylphosphonic acid in water using anion-exchange chromatography with coulometric detection. Journal of Chromatography A, 1208(1-2), 246-249. doi:10.1016/j.chroma.2008.09.009Yoshioka, N., Asano, M., Kuse, A., Mitsuhashi, T., Nagasaki, Y., & Ueno, Y. (2011). Rapid determination of glyphosate, glufosinate, bialaphos, and their major metabolites in serum by liquid chromatography–tandem mass spectrometry using hydrophilic interaction chromatography. Journal of Chromatography A, 1218(23), 3675-3680. doi:10.1016/j.chroma.2011.04.021SILVA, A. S., TÓTH, I. V., PEZZA, L., PEZZA, H. R., & LIMA, J. L. F. C. (2011). Determination of Glyphosate in Water Samples by Multi-pumping Flow System Coupled to a Liquid Waveguide Capillary Cell. Analytical Sciences, 27(10), 1031. doi:10.2116/analsci.27.1031Amelin, V. G., Bol’shakov, D. S., & Tretiakov, A. V. (2012). Determination of glyphosate and aminomethylphosphonic acid in surface water and vegetable oil by capillary zone electrophoresis. Journal of Analytical Chemistry, 67(4), 386-391. doi:10.1134/s1061934812020037Da Silva, A. S., Fernandes, F. C. B., Tognolli, J. O., Pezza, L., & Pezza, H. R. (2011). A simple and green analytical method for determination of glyphosate in commercial formulations and water by diffuse reflectance spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(5), 1881-1885. doi:10.1016/j.saa.2011.05.081Chiu, H.-Y., Lin, Z.-Y., Tu, H.-L., & Whang, C.-W. (2008). Analysis of glyphosate and aminomethylphosphonic acid by capillary electrophoresis with electrochemiluminescence detection. Journal of Chromatography A, 1177(1), 195-198. doi:10.1016/j.chroma.2007.11.042Jin, J., Takahashi, F., Kaneko, T., & Nakamura, T. (2010). Characterization of electrochemiluminescence of tris(2,2′-bipyridine)ruthenium(II) with glyphosate as coreactant in aqueous solution. Electrochimica Acta, 55(20), 5532-5537. doi:10.1016/j.electacta.2010.04.031Yang, G., Xu, X., Shen, M., Wang, W., Xu, L., Chen, G., & Fu, F. (2009). Determination of organophosphorus pesticides by capillary electrophoresis-inductively coupled plasma mass spectrometry with collective sample-introduction technique. ELECTROPHORESIS, 30(10), 1718-1723. doi:10.1002/elps.200800387Oliveira, G. C., Moccelini, S. K., Castilho, M., Terezo, A. J., Possavatz, J., Magalhães, M. R. L., & Dores, E. F. G. C. (2012). Biosensor based on atemoya peroxidase immobilised on modified nanoclay for glyphosate biomonitoring. Talanta, 98, 130-136. doi:10.1016/j.talanta.2012.06.059Songa, E. A., Somerset, V. S., Waryo, T., Baker, P. G. L., & Iwuoha, E. I. (2009). Amperometric nanobiosensor for quantitative determination of glyphosate and glufosinate residues in corn samples. Pure and Applied Chemistry, 81(1), 123-139. doi:10.1351/pac-con-08-01-15Khenifi, A., Derriche, Z., Forano, C., Prevot, V., Mousty, C., Scavetta, E., … Tonelli, D. (2009). Glyphosate and glufosinate detection at electrogenerated NiAl-LDH thin films. Analytica Chimica Acta, 654(2), 97-102. doi:10.1016/j.aca.2009.09.023Sánchez-Bayo, F., Hyne, R. V., & Desseille, K. L. (2010). An amperometric method for the detection of amitrole, glyphosate and its aminomethyl-phosphonic acid metabolite in environmental waters using passive samplers. Analytica Chimica Acta, 675(2), 125-131. doi:10.1016/j.aca.2010.07.013Aquino Neto, S., & de Andrade, A. R. (2009). Electrooxidation of glyphosate herbicide at different DSA® compositions: pH, concentration and supporting electrolyte effect. Electrochimica Acta, 54(7), 2039-2045. doi:10.1016/j.electacta.2008.07.019Méndez, M. A., Súarez, M. F., Cortés, M. T., & Sarria, V. M. (2007). Electrochemical properties and electro-aggregation of silver carbonate sol on polycrystalline platinum electrode and its electrocatalytic activity towards glyphosate oxidation. Electrochemistry Communications, 9(10), 2585-2590. doi:10.1016/j.elecom.2007.08.008COUTINHO, C., SILVA, M., CALEGARO, M., MACHADO, S., & MAZO, L. (2007). Investigation of copper dissolution in the presence of glyphosate using hydrodynamic voltammetry and chronoamperometry. Solid State Ionics, 178(1-2), 161-164. doi:10.1016/j.ssi.2006.10.027Songa, E. A., Arotiba, O. A., Owino, J. H. O., Jahed, N., Baker, P. G. L., & Iwuoha, E. I. (2009). Electrochemical detection of glyphosate herbicide using horseradish peroxidase immobilized on sulfonated polymer matrix. Bioelectrochemistry, 75(2), 117-123. doi:10.1016/j.bioelechem.2009.02.007Bratskaya, S., Golikov, A., Lutsenko, T., Nesterova, O., & Dudarchik, V. (2008). Charge characteristics of humic and fulvic acids: Comparative analysis by colloid titration and potentiometric titration with continuous pK-distribution function model. Chemosphere, 73(4), 557-563. doi:10.1016/j.chemosphere.2008.06.014De Paolis, F., & Kukkonen, J. (1997). Binding of organic pollutants to humic and fulvic acids: Influence of pH and the structure of humic material. Chemosphere, 34(8), 1693-1704. doi:10.1016/s0045-6535(97)00026-xWang, S., Hu, J., Li, J., & Dong, Y. (2009). Influence of pH, soil humic/fulvic acid, ionic strength, foreign ions and addition sequences on adsorption of Pb(II) onto GMZ bentonite. Journal of Hazardous Materials, 167(1-3), 44-51. doi:10.1016/j.jhazmat.2008.12.079Chen, C., & Wang, X. (2007). Sorption of Th (IV) to silica as a function of pH, humic/fulvic acid, ionic strength, electrolyte type. Applied Radiation and Isotopes, 65(2), 155-163. doi:10.1016/j.apradiso.2006.07.003Heineke, D., Franklin, S. J., & Raymond, K. N. (1994). Coordination Chemistry of Glyphosate: Structural and Spectroscopic Characterization of Bis(glyphosate)metal(III) Complexes. Inorganic Chemistry, 33(11), 2413-2421. doi:10.1021/ic00089a017Woertz, K., Tissen, C., Kleinebudde, P., & Breitkreutz, J. (2010). Performance qualification of an electronic tongue based on ICH guideline Q2. Journal of Pharmaceutical and Biomedical Analysis, 51(3), 497-506. doi:10.1016/j.jpba.2009.09.029Vlasov, Y., Legin, A., & Rudnitskaya, A. (2002). Electronic tongues and their analytical application. Analytical and Bioanalytical Chemistry, 373(3), 136-146. doi:10.1007/s00216-002-1310-2Masot, R., Alcañiz, M., Fuentes, A., Schmidt, F. C., Barat, J. M., Gil, L., … Soto, J. (2010). Design of a low-cost non-destructive system for punctual measurements of salt levels in food products using impedance spectroscopy. Sensors and Actuators A: Physical, 158(2), 217-223. doi:10.1016/j.sna.2010.01.010Campos, I., Alcañiz, M., Aguado, D., Barat, R., Ferrer, J., Gil, L., … Vivancos, J.-L. (2012). A voltammetric electronic tongue as tool for water quality monitoring in wastewater treatment plants. Water Research, 46(8), 2605-2614. doi:10.1016/j.watres.2012.02.029Campos, I., Masot, R., Alcañiz, M., Gil, L., Soto, J., Vivancos, J. L., … Martínez-Mañez., R. (2010). Accurate concentration determination of anions nitrate, nitrite and chloride in minced meat using a voltammetric electronic tongue. Sensors and Actuators B: Chemical, 149(1), 71-78. doi:10.1016/j.snb.2010.06.028García-Breijo, E., Barat, J. M., Torres, O. L., Grau, R., Gil, L., Ibáñez, J., … Fraile, R. (2008). Development of a puncture electronic device for electrical conductivity measurements throughout meat salting. Sensors and Actuators A: Physical, 148(1), 63-67. doi:10.1016/j.sna.2008.07.013Gil, L., Barat, J. M., Garcia-Breijo, E., Ibañez, J., Martínez-Máñez, R., Soto, J., … Toldrá, F. (2008). Fish freshness analysis using metallic potentiometric electrodes. Sensors and Actuators B: Chemical, 131(2), 362-370. doi:10.1016/j.snb.2007.11.052Labrador, R. H., Masot, R., Alcañiz, M., Baigts, D., Soto, J., Martínez-Mañez, R., … Barat, J. M. (2010). Prediction of NaCl, nitrate and nitrite contents in minced meat by using a voltammetric electronic tongue and an impedimetric sensor. Food Chemistry, 122(3), 864-870. doi:10.1016/j.foodchem.2010.02.049Toko, K. (2000). Taste sensor. Sensors and Actuators B: Chemical, 64(1-3), 205-215. doi:10.1016/s0925-4005(99)00508-0Scampicchio, M., Benedetti, S., Brunetti, B., & Mannino, S. (2006). Amperometric Electronic Tongue for the Evaluation of the Tea Astringency. Electroanalysis, 18(17), 1643-1648. doi:10.1002/elan.200603586Bleibaum, R. N., Stone, H., Tan, T., Labreche, S., Saint-Martin, E., & Isz, S. (2002). Comparison of sensory and consumer results with electronic nose and tongue sensors for apple juices. Food Quality and Preference, 13(6), 409-422. doi:10.1016/s0950-3293(02)00017-4Ivarsson, P., Holmin, S., Höjer, N.-E., Krantz-Rülcker, C., & Winquist, F. (2001). Discrimination of tea by means of a voltammetric electronic tongue and different applied waveforms. Sensors and Actuators B: Chemical, 76(1-3), 449-454. doi:10.1016/s0925-4005(01)00583-4Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185, 1-17. doi:10.1016/0003-2670(86)80028-9Coutinho, C. F. B., & Mazo, L. H. (2005). Complexos metálicos com o herbicida glifosato: revisão. Química Nova, 28(6), 1038-1045. doi:10.1590/s0100-40422005000600019Luo, P., Zhang, F., & Baldwin, R. P. (1991). Constant-potential amperometric detection of underivatized amino acids and peptides at a copper electrode. Analytical Chemistry, 63(17), 1702-1707. doi:10.1021/ac00017a01

    Taux de succès des greffes osseuses autologues rétro-molaires : étude descriptive d’une cohorte normande

    No full text
    Background: Autogenous bones grafts is the Gold Standard for alveolar ridge augmentation before dental implant treatment. The aim of the study is to assess the implantory success at four to five months from the bones grafts by a retromolar harvesting and to analyse the clinical results.Methods: Our study is a multicentric retrospective analyse from january 2017 to december 2021 of 29 cases.The characteristics of the population, surgical datas, and post surgicals complications were collected retrospectively.Results: Among the 29 patients who had a retromolar autogenous bones grafts, 23 patients (80%) had a implantory rehablitation between 4 to 5 months. Amid 6 patients with a implantory failure to 4-5 months, the main complication is an exposure of the graft bone (5 cases). 2 patients felt a temporary hypoesthesy in the inferior alveolar nerve area. No association exists between the occurrence of complication and the tobacco consumption. There is no significative difference on the other characteristics collected, as well as the surgical datas. Conclusions: Autogenous bones grafts by a retromolar harvesting depict a good technique for the alveolar ridge augmentation in pre implantory surgery. Nevertheless, autogenous bones grafts success neads studies with longer follow up after dental implant rehabilitation.Introduction : les greffes osseuses autologues représentent le Gold standard pour les reconstructions alvéolaires avant la mise en place des implants. L’objectif de cette étude est d’évaluer la réussite implantaire à 4-5 mois de la greffe osseuse par un prélèvement rétro-molaire et d’analyser les résultats cliniques. Matériels et méthodes : notre étude est une analyse rétrospective multicentrique de janvier 2017 à décembre 2021 de 29 cas. Un recueil des caractéristiques de la population, des données opératoires et des complications post-opératoires a été réalisé de manière rétrospective. Résultats : sur les 29 patients ayant eu une greffe osseuse autologue rétro-molaire à visée pré-implantaire seulement 23 patients (80%) ont pu bénéficier d’une réhabilitation implantaire entre 4 et 5 mois. Sur les 6 patients avec un échec implantaire à 4-5 mois, la principale complication répertoriée est l’exposition du greffon au site receveur (5 cas). Seulement 2 patients ont présenté une hypoesthésie temporaire dans la zone du nerf alvéolaire inférieur. Il n’y avait pas d’association entre la survenue de complication et la consommation tabagique. Nous n’avons pas noté de différence significative sur les autres caractéristiques recueillies sur les patients ainsi que sur les données opératoires. Conclusion : les greffes osseuses autologues par un prélèvement rétro-molaire représentent une bonne technique pour les reconstructions alvéolaires en chirurgie pré-implantaire. Le taux de succès présenté à 4-5 mois dans cette étude se rapproche de ceux rapportés dans la littérature ad hoc. Cependant la réussite des greffes osseuses autologues à long terme nécessite des études avec un suivi long après la mise en place de ou des implant(s)
    corecore