10 research outputs found

    New metal complexes derived from diacetylmonoxime-n(4)antipyrinylthiosemicarbazone: Synthesis, characterization and evaluation of antitumor activity against Ehrlich solid tumors induced in mice

    Get PDF
    The present study aimed to synthesize new metal complexes of diacetylmonoxime-N(4)antipyrinylthiosemicarbazone ligand and evaluate their antitumor activity. New complexes with ferric, cobalt, nickel and copper ions were prepared. Elemental, 1H Nuclear magnetic resonance, Mass spectroscopy, Electron paramagnetic resonance, Fourier Transform InfraredSpectroscopy, Ultraviolet–visible and thermal gravimetricanalysis were used to characterize the obtained complexes 1–11. An in vivo tumor model was established to investigate the effect of the naked ligand and its metal complexes 2, 5 and 8. Ehrlich ascites carcinoma solid tumor was induced in mice through subcutaneous inoculation of Ehrlich ascites carcinoma cells. The volumes of the formed solid tumors, the alanine transaminase, aspartate transaminase, albumin concentration in the serum, as well as the levels of Ki67 and p53 proteins in tumor and liver tissues were detected. All the tested complexes, especially complex 5, possessed proliferative inhibition manifested as the reduction of the tumor volume, Alanine aminotransferase & Aspartate aminotransferase activity, and the level of the Ki67 protein. Additionally, they restored the albumin concentration to normal levels as well increased the level of pro-apoptotic p53 protein. In conclusion, the antitumor activity of the newly synthesized metal complexes against Ehrlich ascites carcinoma solid tumors was proved to be mediated by the inhibition of Ki67 and induction of p53 proteins

    Beyond the pandemic : COVID-19 pandemic changed the face of life

    Get PDF
    Funding Information: This work was supported by the Swedish Research Council Vetenskapsr?det (VR grant 2016?05885). Funding Information: Acknowledgments: H.R. El-Seedi is very grateful to the Swedish Research links grant VR 2016– 05885 and the Department of Molecular Biosciences, Wenner-Grens Institute, Stockholm University, Sweden, for the financial support. Publisher Copyright: © 2021 by the au-thors. Licensee MDPI, Basel, Switzerland.The COVID-19 pandemic is a serious challenge for societies around the globe as entire populations have fallen victim to the infectious spread and have taken up social distancing. In many countries, people have had to self-isolate and to be confined to their homes for several weeks to months to prevent the spread of the virus. Social distancing measures have had both negative and positive impacts on various aspects of economies, lifestyles, education, transportation, food supply, health, social life, and mental wellbeing. On other hands, due to reduced population movements and the decline in human activities, gas emissions decreased and the ozone layer improved; this had a positive impact on Earth’s weather and environment. Overall, the COVID-19 pandemic has negative effects on human activities and positive impacts on nature. This study discusses the impact of the COVID-19 pandemic on different life aspects including the economy, social life, health, education, and the environment.publishersversionPeer reviewe

    Pharmaceutical manipulation of citrus flavonoids towards improvement of its bioavailability and stability. A mini review and a meta-analysis study

    No full text
    Citrus flavonoids are well recognized for their health benefits and contribution to daily nutritional dietary supplements. Their biological effects include anticancer, anti-inflammatory and antioxidant effects. Nevertheless, their low solubility, stability, and bioavailability challenge their potential industrial formulations. This review summarizes the state-of-the art optimization of citrus flavonoid formulations representing the possible physicochemical modifications and their potential implications. These modifications could be achieved using different techniques such as nanonization and encapsulation in nanoscale carriers. This review summarizes the recent research on chemical modifications of citrus flavonoids to facilitate their commercial use and or applications. Applications of these technologies are presented to the reader highlighting their advantages, limitations and needed future improvements. Furthermore, a meta-analysis study was conducted to prove-by-evidence the superiority of drugs-loaded nanocarriers regarding bioavailability compared to their conventionally delivered counterparts

    The Chemopreventive Effect of Tanacetum Polycephalum Against LA7-Induced Breast Cancer in Rats and the Apoptotic Effect of a Cytotoxic Sesquiterpene Lactone in MCF7 Cells: A Bioassay-Guided Approach

    No full text
    Background: Tanacetum polycephalum L. Schultz-Bip is a member of the Asteraceae family. This study evaluated the chemopreventive effect of a T. polycephalum hexane extract (TPHE) using in in vivo and in vitro models. Methods and Results: Five groups of rats: normal control, cancer control, TPHE low dose, TPHE high dose and positive control (tamoxifen) were used for the in vivo study. Histopathological examination showed that TPHE significantly suppressed the carcinogenic effect of LA7 tumour cells. The tumour sections from TPHE-treated rats demonstrated significantly reduced expression of Ki67 and PCNA compared to the cancer control group. Using a bioassay-guided approach, the cytotoxic compound of TPHE was identified as a tricyclic sesquiterpene lactone, namely, 8β- hydroxyl- 4β, 15- dihydrozaluzanin C (HDZC). Signs of early and late apoptosis were observed in MCF7 cells treated with HDZC and were attributed to the mitochondrial intrinsic pathway based on the up-regulation of Bax and the down-regulation of Bcl-2. HDZC induced cell cycle arrest in MCF7 cells and increased the expression of p21 and p27 at the mRNA and protein levels. Conclusion: This results of this study substantiate the anticancer effect of TPHE and highlight the involvement of HDZC as one of the contributing compounds that act by initiating mitochondrial-mediated apoptosis

    Arctium lappa (Burdock): Insights from ethnopharmacology potential, chemical constituents, clinical studies, pharmacological utility and nanomedicine

    No full text
    Arctium lappa L. is a medicinal edible homologous plant, commonly known as burdock or bardana, which belongs to the Asteraceae family. It is widely distributed throughout Northern Asia, Europe, and North America and has been utilized for hundreds of years. The roots, fruits, seeds, and leaves of A. lappa have been extensively used in traditional Chinese Medicine (TCM). A. lappa has attracted a great deal of attention due to its possession of highly recognized bioactive metabolites with significant therapeutic potential. Numerous pharmacological effects have been demonstrated in vitro and in vivo by A. lappa and its bioactive metabolites, including antimicrobial, anti-obesity, antioxidant, anticancer, anti-inflammatory, anti-diabetic, anti-allergic, antiviral, gastroprotective, hepatoprotective, and neuroprotective activities. Additionally, A. lappa has demonstrated considerable clinical efficacies and valuable applications in nanomedicine. Collectively, this review covers the properties of A. lappa and its bioactive metabolites, ethnopharmacology aspects, pharmacological effects, clinical trials, and applications in the field of nanomedicine. Hence, a significant attention should be paid to clinical trials and industrial applications of this plant with particular emphasis, on drug discovery and nanotechnology

    Gelatin nanofibers: Recent insights in synthesis, bio-medical applications and limitations

    Get PDF
    The use of gelatin and gelatin-blend polymers as environmentally safe polymers to synthesis electrospun nanofibers, has caused a revolution in the biomedical field. The development of efficient nanofibers has played a significant role in drug delivery, and for use in advanced scaffolds in regenerative medicine. Gelatin is an exceptional biopolymer, which is highly versatile, despite variations in the processing technology. The electrospinning process is an efficient technique for the manufacture of gelatin electrospun nanofibers (GNFs), as it is simple, efficient, and cost-effective. GNFs have higher porosity with large surface area and biocompatibility, despite that there are some drawbacks. These drawbacks include rapid degradation, poor mechanical strength, and complete dissolution, which limits the use of gelatin electrospun nanofibers in this form for biomedicine. Thus, these fibers need to be cross-linked, in order to control its solubility. This modification caused an improvement in the biological properties of GNFs, which made them suitable candidates for various biomedical applications, such as wound healing, drug delivery, bone regeneration, tubular scaffolding, skin, nerve, kidney, and cardiac tissue engineering. In this review an outline of electrospinning is shown with critical summary of literature evaluated with respect to the various applications of nanofibers-derived gelatin

    Antibacterial effect of the red sea soft coral <i>Sarcophyton trocheliophorum</i>

    No full text
    <div><p>The marine soft corals <i>Sarcophyton trocheliophorum</i> crude extracts possessed antimicrobial activity towards pathogenic bacterial strains, i.e. <i>Bacillus cereus</i>, <i>Salmonella typhi, Escherichia coli, Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i>. Bioassay-guided fractionation indicated that the antimicrobial effect was due to the presence of terpenoid bioactive derivatives. Further biological assays of the <i>n</i>-hexane fractions were carried out using turbidity assay, inhibition zone assay and minimum inhibitory concentration for investigating the growth-inhibition effect towards the Gram-positive and Gram-negative bacteria. The fractions were screened and the structure of the isolated compound was justified by interpretation of the spectroscopic data, mainly mass spectrometry (GC-MS). The structure was assigned as (5<i>S</i>)-3-[(3<i>E</i>,5<i>S</i>)-5-hydroxy-3-hepten-6-yn-1-yl]-5-methyl-2(5H)-furanone and was effective at concentrations as low as 0.20 mg/mL. The above findings, in the course of our ongoing research on marine products, may implicate that the profound anti-microbial activity of the <i>S. trocheliophorum</i> soft corals, inhabiting the red sea reefs, is attributed to the presence of growth-inhibiting secondary metabolites mainly terpenoids.</p></div

    Plants mentioned in the Islamic Scriptures (Holy Qur'ân and Ahadith): Traditional uses and medicinal importance in contemporary times

    No full text
    corecore