9 research outputs found

    Parental experience of a risky environment leads to improved offspring growth rate.

    No full text
    6 pagesInternational audienceParasites (or diseases) are a major selective force for the evolution of life history traits and parasite-host evolution. Mothers can show a variety of responses to parasites during pregnancy, with different consequences for them or their offspring. However, whether information in the maternal environment before pregnancy can cause a change in the phenotype of the offspring is unknown. To avoid the confounding effect of pathogens and to reduce the risk of a direct effect of maternal immune system activation, we injected female laboratory mice with lipopolysaccharides (LPS) before they mated. In order to provide constant information on the potential infectious risk of the environment, females were mated with males that were also exposed to LPS before mating. Offspring from immune-challenged parents were larger and grew at a faster rate than offspring from control parents (injected with PBS). Additionally, offspring from immune-challenged parents that suffered the most from inflammation grew at a faster rate than offspring from low suffering parents. Producing heavier offspring that will reach sexual maturity earlier is likely to have fitness benefits for parents and offspring through improved reproductive success

    Ship- and island-based atmospheric soundings from the 2020 EUREC<sup>4</sup>A field campaign

    No full text
    International audienceTo advance the understanding of the interplay among clouds, convection, and circulation, and its role in climate change, the EUREC4A and ATOMIC field campaigns collected measurements in the western tropical Atlantic during Jan-uary and February 2020. Upper-air radiosondes were launched regularly (usually 4-hourly) from a network consisting of the Barbados Cloud Observatory (BCO) and four ships within 51–60 ◦W, 6–16 ◦N. From January 8 to February 19, a total of 812 radiosondes measured wind, temperature and relative humidity. In addition to the ascent, the descent was recorded for 82 % of the soundings. The soundings sampled changes in atmospheric pressure, winds, lifting condensation level, boundary layer depth, and vertical distribution of moisture associated with different ocean surface conditions, synoptic variability, and mesoscale convective organization. Raw (Level-0), quality-controlled 1-second (Level-1), and vertically gridded (Level-2) data in NetCDF format (Stephan et al., 2020) are available to the public at AERIS (https://doi.org/10.25326/62). The methods of data collection and post-processing for the radiosonde data set are described here

    The effects of intensified training on resting metabolic rate (RMR), body composition and performance in trained cyclists

    Get PDF
    <div><p>Background</p><p>Recent research has demonstrated decreases in resting metabolic rate (RMR), body composition and performance following a period of intensified training in elite athletes, however the underlying mechanisms of change remain unclear. Therefore, the aim of the present study was to investigate how an intensified training period, designed to elicit overreaching, affects RMR, body composition, and performance in trained endurance athletes, and to elucidate underlying mechanisms.</p><p>Method</p><p>Thirteen (n = 13) trained male cyclists completed a six-week training program consisting of a “Baseline” week (100% of regular training load), a “Build” week (~120% of Baseline load), two “Loading” weeks (~140, 150% of Baseline load, respectively) and two “Recovery” weeks (~80% of Baseline load). Training comprised of a combination of laboratory based interval sessions and on-road cycling. RMR, body composition, energy intake, appetite, heart rate variability (HRV), cycling performance, biochemical markers and mood responses were assessed at multiple time points throughout the six-week period. Data were analysed using a linear mixed modeling approach.</p><p>Results</p><p>The intensified training period elicited significant decreases in RMR (F<sub>(5,123.36)</sub> = 12.0947, p = <0.001), body mass (F<sub>(2,19.242)</sub> = 4.3362, p = 0.03), fat mass (F<sub>(2,20.35)</sub> = 56.2494, p = <0.001) and HRV (F<sub>(2,22.608)</sub> = 6.5212, p = 0.005); all of which improved following a period of recovery. A state of overreaching was induced, as identified by a reduction in anaerobic performance (F<sub>(5,121.87)</sub> = 8.2622, p = <0.001), aerobic performance (F<sub>(5,118.26)</sub> = 2.766, p = 0.02) and increase in total mood disturbance (F<sub>(5, 110.61)</sub> = 8.1159, p = <0.001).</p><p>Conclusion</p><p>Intensified training periods elicit greater energy demands in trained cyclists, which, if not sufficiently compensated with increased dietary intake, appears to provoke a cascade of metabolic, hormonal and neural responses in an attempt to restore homeostasis and conserve energy. The proactive monitoring of energy intake, power output, mood state, body mass and HRV during intensified training periods may alleviate fatigue and attenuate the observed decrease in RMR, providing more optimal conditions for a positive training adaptation.</p></div

    Profiling Online Bidders

    No full text
    corecore