37 research outputs found

    Highly Efficient and Scalable Separation of Semiconducting Carbon Nanotubes via Weak Field Centrifugation

    Get PDF
    The identification of scalable processes that transfer random mixtures of single-walled carbon nanotubes (SWCNTs) into fractions featuring a high content of semiconducting species is crucial for future application of SWCNTs in high-performance electronics. Herein we demonstrate a highly efficient and simple separation method that relies on selective interactions between tailor-made amphiphilic polymers and semiconducting SWCNTs in the presence of low viscosity separation media. High purity individualized semiconducting SWCNTs or even self-organized semiconducting sheets are separated from an as-produced SWCNT dispersion via a single weak field centrifugation run. Absorption and Raman spectroscopy are applied to verify the high purity of the obtained SWCNTs. Furthermore SWCNT - network field-effect transistors were fabricated, which exhibit high ON/OFF ratios (105^{5}) and field-effect mobilities (17 cm2^{2}/Vs). In addition to demonstrating the feasibility of high purity separation by a novel low complexity process, our method can be readily transferred to large scale production

    Physics and Astrophysics of Strange Quark Matter

    Get PDF
    3-flavor quark matter (strange quark matter; SQM) can be stable or metastable for a wide range of strong interaction parameters. If so, SQM can play an important role in cosmology, neutron stars, cosmic ray physics, and relativistic heavy-ion collisions. As an example of the intimate connections between astrophysics and heavy-ion collision physics, this Chapter gives an overview of the physical properties of SQM in bulk and of small-baryon number strangelets; discusses the possible formation, destruction, and implications of lumps of SQM (quark nuggets) in the early Universe; and describes the structure and signature of strange stars, as well as formation and detection of strangelets in cosmic rays. It is concluded, that astrophysical and laboratory searches are complementary in many respects, and that both should be pursued to test the intriguing possibility of a strange ground state for hadronic matter, and (more generally) to improve our knowledge of the strong interactions.Comment: 45 pages incl. figures. To appear in "Hadrons in Dense Matter and Hadrosynthesis", Lecture Notes in Physics, Springer Verlag (ed. J.Cleymans

    Strange Quark Matter and Compact Stars

    Full text link
    Astrophysicists distinguish between three different types of compact stars. These are white dwarfs, neutron stars, and black holes. The former contain matter in one of the densest forms found in the Universe which, together with the unprecedented progress in observational astronomy, make such stars superb astrophysical laboratories for a broad range of most striking physical phenomena. These range from nuclear processes on the stellar surface to processes in electron degenerate matter at subnuclear densities to boson condensates and the existence of new states of baryonic matter--like color superconducting quark matter--at supernuclear densities. More than that, according to the strange matter hypothesis strange quark matter could be more stable than nuclear matter, in which case neutron stars should be largely composed of pure quark matter possibly enveloped in thin nuclear crusts. Another remarkable implication of the hypothesis is the possible existence of a new class of white dwarfs. This article aims at giving an overview of all these striking physical possibilities, with an emphasis on the astrophysical phenomenology of strange quark matter. Possible observational signatures associated with the theoretically proposed states of matter inside compact stars are discussed as well. They will provide most valuable information about the phase diagram of superdense nuclear matter at high baryon number density but low temperature, which is not accessible to relativistic heavy ion collision experiments.Comment: 58 figures, to appear in "Progress in Particle and Nuclear Physics"; References added for sections 1,2,3,5; Equation (116) corrected; Figs. 1 and 58 update

    Ir-CPI, a coagulation contact phase inhibitor from the tick Ixodes ricinus, inhibits thrombus formation without impairing hemostasis

    Get PDF
    Blood coagulation starts immediately after damage to the vascular endothelium. This system is essential for minimizing blood loss from an injured blood vessel but also contributes to vascular thrombosis. Although it has long been thought that the intrinsic coagulation pathway is not important for clotting in vivo, recent data obtained with genetically altered mice indicate that contact phase proteins seem to be essential for thrombus formation. We show that recombinant Ixodes ricinus contact phase inhibitor (Ir-CPI), a Kunitz-type protein expressed by the salivary glands of the tick Ixodes ricinus, specifically interacts with activated human contact phase factors (FXIIa, FXIa, and kallikrein) and prolongs the activated partial thromboplastin time (aPTT) in vitro. The effects of Ir-CPI were also examined in vivo using both venous and arterial thrombosis models. Intravenous administration of Ir-CPI in rats and mice caused a dose-dependent reduction in venous thrombus formation and revealed a defect in the formation of arterial occlusive thrombi. Moreover, mice injected with Ir-CPI are protected against collagen- and epinephrine-induced thromboembolism. Remarkably, the effective antithrombotic dose of Ir-CPI did not promote bleeding or impair blood coagulation parameters. To conclude, our results show that a contact phase inhibitor is an effective and safe antithrombotic agent in vivo

    Modeling the vacuolar storage of malate shed lights on pre- and post-harvest fruit acidity

    Get PDF
    Background: Malate is one of the most important organic acids in many fruits and its concentration plays a critical role in organoleptic properties. Several studies suggest that malate accumulation in fruit cells is controlled at the level of vacuolar storage. However, the regulation of vacuolar malate storage throughout fruit development, and the origins of the phenotypic variability of the malate concentration within fruit species remain to be clarified. In the present study, we adapted the mechanistic model of vacuolar storage proposed by Lobit et al. in order to study the accumulation of malate in pre and postharvest fruits. The main adaptation concerned the variation of the free energy of ATP hydrolysis during fruit development. Banana fruit was taken as a reference because it has the particularity of having separate growth and post-harvest ripening stages, during which malate concentration undergoes substantial changes. Moreover, the concentration of malate in banana pulp varies greatly among cultivars which make possible to use the model as a tool to analyze the genotypic variability. The model was calibrated and validated using data sets from three cultivars with contrasting malate accumulation, grown under different fruit loads and potassium supplies, and harvested at different stages. Results: The model predicted the pre and post-harvest dynamics of malate concentration with fairly good accuracy for the three cultivars (mean RRMSE = 0.25-0.42). The sensitivity of the model to parameters and input variables was analyzed. According to the model, vacuolar composition, in particular potassium and organic acid concentrations, had an important effect on malate accumulation. The model suggested that rising temperatures depressed malate accumulation. The model also helped distinguish differences in malate concentration among the three cultivars and between the pre and post-harvest stages by highlighting the probable importance of proton pump activity and particularly of the free energy of ATP hydrolysis and vacuolar pH. Conclusions: This model appears to be an interesting tool to study malate accumulation in pre and postharvest fruits and to get insights into the ecophysiological determinants of fruit acidity, and thus may be useful for fruit quality improvement. (Résumé d'auteur

    Effect of aliskiren on post-discharge outcomes among diabetic and non-diabetic patients hospitalized for heart failure: insights from the ASTRONAUT trial

    Get PDF
    Aims The objective of the Aliskiren Trial on Acute Heart Failure Outcomes (ASTRONAUT) was to determine whether aliskiren, a direct renin inhibitor, would improve post-discharge outcomes in patients with hospitalization for heart failure (HHF) with reduced ejection fraction. Pre-specified subgroup analyses suggested potential heterogeneity in post-discharge outcomes with aliskiren in patients with and without baseline diabetes mellitus (DM). Methods and results ASTRONAUT included 953 patients without DM (aliskiren 489; placebo 464) and 662 patients with DM (aliskiren 319; placebo 343) (as reported by study investigators). Study endpoints included the first occurrence of cardiovascular death or HHF within 6 and 12 months, all-cause death within 6 and 12 months, and change from baseline in N-terminal pro-B-type natriuretic peptide (NT-proBNP) at 1, 6, and 12 months. Data regarding risk of hyperkalaemia, renal impairment, and hypotension, and changes in additional serum biomarkers were collected. The effect of aliskiren on cardiovascular death or HHF within 6 months (primary endpoint) did not significantly differ by baseline DM status (P = 0.08 for interaction), but reached statistical significance at 12 months (non-DM: HR: 0.80, 95% CI: 0.64-0.99; DM: HR: 1.16, 95% CI: 0.91-1.47; P = 0.03 for interaction). Risk of 12-month all-cause death with aliskiren significantly differed by the presence of baseline DM (non-DM: HR: 0.69, 95% CI: 0.50-0.94; DM: HR: 1.64, 95% CI: 1.15-2.33; P < 0.01 for interaction). Among non-diabetics, aliskiren significantly reduced NT-proBNP through 6 months and plasma troponin I and aldosterone through 12 months, as compared to placebo. Among diabetic patients, aliskiren reduced plasma troponin I and aldosterone relative to placebo through 1 month only. There was a trend towards differing risk of post-baseline potassium ≄6 mmol/L with aliskiren by underlying DM status (non-DM: HR: 1.17, 95% CI: 0.71-1.93; DM: HR: 2.39, 95% CI: 1.30-4.42; P = 0.07 for interaction). Conclusion This pre-specified subgroup analysis from the ASTRONAUT trial generates the hypothesis that the addition of aliskiren to standard HHF therapy in non-diabetic patients is generally well-tolerated and improves post-discharge outcomes and biomarker profiles. In contrast, diabetic patients receiving aliskiren appear to have worse post-discharge outcomes. Future prospective investigations are needed to confirm potential benefits of renin inhibition in a large cohort of HHF patients without D

    Changing the Allocation Rules in the EU ETS: Impact on Competitiveness and Economic Efficiency

    Full text link
    We assess five proposals for the future of the EU greenhouse gas Emission Trading Scheme (ETS): pure grandfathering allocation of emission allowances (GF), output-based allocation (OB), auctioning (AU), auctioning with border adjustments (AU-BA), and finally output-based allocation in sectors exposed to international competition combined with auctioning in electricity generation (OB-AU). We look at the impact on production, trade, CO2 leakage and welfare. We use a partial equilibrium model of the EU 27 featuring three sectors covered by the EU ETS - cement, steel and electricity - plus the aluminium sector, which is indirectly impacted through a rise in electricity price. The leakage ratio, i.e. the increase in emissions abroad over the decrease in EU emissions, ranges from around 8% under GF and AU to -2% under AU-BA and varies greatly among sectors. Concerning the overall economic cost, OB appears to be the least efficient policy, even when taking into account its ability to prevent CO2 leakage. On the other hand, this policy minimises production losses and wealth transfers among stakeholders, which is likely to soften oppositions. GF and AU are the most efficient policies from an EU perspective, even when leakage is accounted for. From a world welfare perspective and whatever the emission reduction, AU-BA is the least costly policy, while OB-AU, AU and GF entail similar costs

    Abstract Counting

    Get PDF
    and enumerating pointed pseudo-triangulation
    corecore