161 research outputs found
Understanding immunometabolism in cardiovascular disease: translating research into practice.
G.D.N. is supported by Progetti di Rilevante Interesse Nazionale (PRIN
2022 7KTSAT), Ricerca Finalizzata, Ministry of Health (RF-2019-
12370896), PNRR Missione 4, (Progetto CN3-National Center for
Gene Therapy and Drugs based on RNA Technology), PNRR
Missione 4 (Progetto MUSA-Multilayered Urban Sustainability
Action), PNRR Missione 6 (PNRR-MAD-2022-12375913), European
Commission (EUROPEAID/173691/DD/ACT/XK Nanokos), and
European Research Area for Health (ERA4Health; GA No.
101095426 of the EU Horizon Europe Research and Innovation
Programme). D.F.J.K. is supported by grants from the Novo Nordisk
Foundation (0064142; 0075258); Independent Research Fund
Denmark (2034-00136B), Simon Fougner Hartmanns Familiefond
(2023-0066), and the University of Southern Denmark. J.V.d.B. was
funded by a consortia grant from European Research Area Network
on Cardiovascular Diseases (ERA-CVD 2019T108), The Netherlands
Heart Foundation senior fellowship (2017T048), and an ENWKlein-1 grant from NWO (OCENW.KLEIN.268). Work in the D.S. laboratory is funded by the CNIC; by MCIN PID2022-137712OB-I00,
CPP2021-008310, and CPP2022-009762 MCIN/AEI/10.13039/
501100011033 Unión Europea NextGenerationEU/PRTR; by
Comunidad de Madrid (P2022/BMD-7333 INMUNOVAR-CM); and
by ‘la Caixa’ Foundation (LCF/PR/HR23/52430012, LCF/PR/HR22/
52420019, and LCF/PR/HR20/52400015).S
Immunotherapy with tolerogenic apolipoprotein B-100–loaded dendritic cells attenuates atherosclerosis in hypercholesterolemic mice
BACKGROUND: Atherosclerosis is a chronic inflammatory disease characterized by a massive intimal accumulation of low-density lipoprotein that triggers chronic vascular inflammation with an autoimmune response to low-density lipoprotein components.
METHODS AND RESULTS: To dampen the inflammatory component of atherosclerosis, we injected hypercholesterolemic huB100(tg) × Ldlr(-/-) mice (mice transgenic for human apolipoprotein B100 [ApoB100] and deficient for the low-density lipoprotein receptor) intravenously with dendritic cells (DCs) that had been pulsed with the low-density lipoprotein protein ApoB100 in combination with the immunosuppressive cytokine interleukin-10. DCs treated with ApoB100 and interleukin-10 reduced proliferation of effector T cells, inhibited production of interferon-γ, and increased de novo generation of regulatory T cells in vitro. Spleen cells from mice treated with DCs plus ApoB100 plus interleukin-10 showed diminished proliferative responses to ApoB100 and significantly dampened T-helper 1 and 2 immunity to ApoB100. Spleen CD4(+) T cells from these mice suppressed activation of ApoB100-reactive T cells in a manner characteristic of regulatory T cells, and mRNA analysis of lymphoid organs showed induction of transcripts characteristic of these cells. Treatment of huB100(tg) × Ldlr(-/-) mice with ApoB100-pulsed tolerogenic DCs led to a significant (70%) reduction of atherosclerotic lesions in the aorta, with decreased CD4(+) T-cell infiltration and signs of reduced systemic inflammation.
CONCLUSIONS: Tolerogenic DCs pulsed with ApoB100 reduced the autoimmune response against low-density lipoprotein and may represent a novel possibility for treatment or prevention of atherosclerosis.Swedish Research CouncilFoundation for Strategic ResearchVinnovaSwedish Heart-Lung FoundationEuropean Union (AtheroRemo integrated project)Stockholm County CouncilPublishe
Uptake of oxLDL and IL-10 production by macrophages requires PAFR and CD36 recruitment into the same lipid rafts
Macrophage interaction with oxidized low-density lipoprotein (oxLDL) leads to its differentiation into foam cells and cytokine production, contributing to atherosclerosis development. In a previous study, we showed that CD36 and the receptor for platelet-activating factor (PAFR) are required for oxLDL to activate gene transcription for cytokines and CD36. Here, we investigated the localization and physical interaction of CD36 and PAFR in macrophages stimulated with oxLDL. We found that blocking CD36 or PAFR decreases oxLDL uptake and IL-10 production. OxLDL induces IL-10 mRNA expression only in HEK293T expressing both receptors (PAFR and CD36). OxLDL does not induce IL-12 production. The lipid rafts disruption by treatment with βCD reduces the oxLDL uptake and IL-10 production. OxLDL induces co-immunoprecipitation of PAFR and CD36 with the constitutive raft protein flotillin-1, and colocalization with the lipid raft-marker GM1-ganglioside. Finally, we found colocalization of PAFR and CD36 in macrophages from human atherosclerotic plaques. Our results show that oxLDL induces the recruitment of PAFR and CD36 into the same lipid rafts, which is important for oxLDL uptake and IL-10 production. This study provided new insights into how oxLDL interact with macrophages and contributing to atherosclerosis development
Identification of a danger-associated peptide from apolipoprotein B100 (ApoBDS-1) that triggers innate proatherogenic responses
Background: Subendothelial deposited low-density lipoprotein particles are a known inflammatory factor in atherosclerosis. However, the causal components derived from low-density lipoprotein are still poorly defined. Apolipoprotein B100 (ApoB100) is the unexchangeable protein component of low-density lipoprotein, and the progression of atherosclerosis is associated with immune responses to ApoB100-derived peptides. In this study, we analyzed the proinflammatory activity of ApoB100 peptides in atherosclerosis.
Methods and Results: By screening a peptide library of ApoB100, we identified a distinct native peptide referred to as ApoB100 danger-associated signal 1 (ApoBDS-1), which shows sequence-specific bioactivity in stimulation of interleukin-8, CCL2, and interleukin-6. ApoBDS-1 activates mitogen-activated protein kinase and calcium signaling, thereby effecting the expression of interleukin-8 in innate immune cells. Ex vivo stimulation of carotid plaques with ApoBDS-1 enhances interleukin-8 and prostaglandin E2 release. Furthermore, we demonstrated that ApoBDS-1–positive peptide fragments are present in atherosclerotic lesions using immunoassays and that low-molecular-weight fractions isolated from plaque show ApoBDS-1 activity inducing interleukin-8 production.
Conclusions: Our data show that ApoBDS-1 is a previously unrecognized peptide with robust proinflammatory activity, contributing to the disease-promoting effects of low-density lipoprotein in the pathogenesis of atherosclerosis. (Circulation. 2011;124:2433-2443.)Swedish Heart-Lung FoundationSwedish Foundation for Strategic ResearchSwedish Research CouncilCenter of Excellence for Research on Inflammation and Cardiovascular Disease Linnaeus ProgramLeducq FoundationEuropean UnionChina Scholarship Council.Publishe
Identifying the anti-inflammatory response to lipid lowering therapy: a position paper from the working group on atherosclerosis and vascular biology of the European Society of Cardiology
Dysregulated lipid metabolism induces an inflammatory and immune response leading to atherosclerosis. Conversely, inflammation may alter lipid metabolism. Recent treatment strategies in secondary prevention of atherosclerosis support beneficial effects of both anti-inflammatory and lipid-lowering therapies beyond current targets. There is a controversy about the possibility that anti-inflammatory effects of lipid-lowering therapy may be either independent or not of a decrease in low-density lipoprotein cholesterol. In this Position Paper, we critically interpret and integrate the results obtained in both experimental and clinical studies on anti-inflammatory actions of lipid-lowering therapy and the mechanisms involved. We highlight that: (i) besides decreasing cholesterol through different mechanisms, most lipid-lowering therapies share anti-inflammatory and immunomodulatory properties, and the anti-inflammatory response to lipid-lowering may be relevant to predict the effect of treatment, (ii) using surrogates for both lipid metabolism and inflammation as biomarkers or vascular inflammation imaging in future studies may contribute to a better understanding of the relative importance of different mechanisms of action, and (iii) comparative studies of further lipid lowering, anti-inflammation and a combination of both are crucial to identify effects that are specific or shared for each treatment strategy
Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis
Immune responses to oxidized low-density lipoprotein (oxLDL) are proposed to be important in atherosclerosis. To identify the mechanisms of recognition that govern T cell responses to LDL particles, we generated T cell hybridomas from human ApoB100 transgenic (huB100tg) mice that were immunized with human oxLDL. Surprisingly, none of the hybridomas responded to oxidized LDL, only to native LDL and the purified LDL apolipoprotein ApoB100. However, sera from immunized mice contained IgG antibodies to oxLDL, suggesting that T cell responses to native ApoB100 help B cells making antibodies to oxLDL. ApoB100 responding CD4+ T cell hybridomas were MHC class II–restricted and expressed a single T cell receptor (TCR) variable (V) β chain, TRBV31, with different Vα chains. Immunization of huB100tgxLdlr−/− mice with a TRBV31-derived peptide induced anti-TRBV31 antibodies that blocked T cell recognition of ApoB100. This treatment significantly reduced atherosclerosis by 65%, with a concomitant reduction of macrophage infiltration and MHC class II expression in lesions. In conclusion, CD4+ T cells recognize epitopes on native ApoB100 protein, this response is associated with a limited set of clonotypic TCRs, and blocking TCR-dependent antigen recognition by these T cells protects against atherosclerosis
Pyruvate dehydrogenase kinase regulates vascular inflammation in atherosclerosis and increases cardiovascular risk
Aims
Recent studies have revealed a close connection between cellular metabolism and the chronic inflammatory process of atherosclerosis. While the link between systemic metabolism and atherosclerosis is well established, the implications of altered metabolism in the artery wall are less understood. Pyruvate dehydrogenase kinase (PDK)-dependent inhibition of pyruvate dehydrogenase (PDH) has been identified as a major metabolic step regulating inflammation. Whether the PDK/PDH axis plays a role in vascular inflammation and atherosclerotic cardiovascular disease remains unclear.
Methods and results
Gene profiling of human atherosclerotic plaques revealed a strong correlation between PDK1 and PDK4 transcript levels and the expression of pro-inflammatory and destabilizing genes. Remarkably, the PDK1 and PDK4 expression correlated with a more vulnerable plaque phenotype, and PDK1 expression was found to predict future major adverse cardiovascular events. Using the small-molecule PDK inhibitor dichloroacetate (DCA) that restores arterial PDH activity, we demonstrated that the PDK/PDH axis is a major immunometabolic pathway, regulating immune cell polarization, plaque development, and fibrous cap formation in Apoe−/− mice. Surprisingly, we discovered that DCA regulates succinate release and mitigates its GPR91-dependent signals promoting NLRP3 inflammasome activation and IL-1β secretion by macrophages in the plaque.
Conclusions
We have demonstrated for the first time that the PDK/PDH axis is associated with vascular inflammation in humans and particularly that the PDK1 isozyme is associated with more severe disease and could predict secondary cardiovascular events. Moreover, we demonstrate that targeting the PDK/PDH axis with DCA skews the immune system, inhibits vascular inflammation and atherogenesis, and promotes plaque stability features in Apoe−/− mice. These results point toward a promising treatment to combat atherosclerosis
Neil3-dependent base excision repair regulates lipid metabolism and prevents atherosclerosis in Apoe-deficient mice
Increasing evidence suggests that oxidative DNA damage accumulates in atherosclerosis. Recently, we showed that a genetic variant in the human DNA repair enzyme NEIL3 was associated with increased risk of myocardial infarction. Here, we explored the role of Neil3/NEIL3 in atherogenesis by both clinical and experimental approaches. Human carotid plaques revealed increased NEIL3 mRNA expression which significantly correlated with mRNA levels of the macrophage marker CD68. Apoe−/−Neil3−/− mice on high-fat diet showed accelerated plaque formation as compared to Apoe−/− mice, reflecting an atherogenic lipid profile, increased hepatic triglyceride levels and attenuated macrophage cholesterol efflux capacity. Apoe−/−Neil3−/− mice showed marked alterations in several pathways affecting hepatic lipid metabolism, but no genotypic alterations in genome integrity or genome-wide accumulation of oxidative DNA damage. These results suggest a novel role for the DNA glycosylase Neil3 in atherogenesis in balancing lipid metabolism and macrophage function, potentially independently of genome-wide canonical base excision repair of oxidative DNA damage
Patients with chronic three-vessel disease in a 15-year follow-up study: genetic and non-genetic predictors of survival.
Genetic and non-genetic predictors of 15-year survival in patients with chronic three-vessel disease (3VD) were investigated. Coronary angiography was performed on 810 subjects with symptoms of stable ischemic heart disease in 1998. The patients with 3VD were genotyped for 23 candidate polymorphisms covering the PPAR-RXR pathway, matrix metalloproteinase-2, renin-angiotensin-aldosterone system, endothelin-1, cytokine genes, MTHFR and APO E variants. Fifteen-year survival data were obtained from the national insurance registry. All data were available in the case of 150 patients with 3VD. Statistical analysis used stepwise Cox regression with dominant, recessive, or additive mode of genetic expression. Involved variables included age, sex, BMI, blood pressure, diabetes, ejection fraction, left main stenosis, previously diagnosed coronary stenosis, myocardial infarction in personal history, and coronary bypass along with polymorphisms pre-selected by log-rank tests. Out of the 23 polymorphisms, four were included in the model construction. SNP in the IL-6 gene rs1800795 (-174 G/C) has been found to be a significant predictor of survival. This SNP was in a linkage disequilibrium with rs1800797 (-597 G/A) in the same gene (D=1.0), which was also found to constitute a significant predictor of survival when rs1800795 was not included in the model construction. Age, increased BMI, diabetes, low EF, and left main stenosis were also significant predictors in all models. Age, increased BMI, diabetes, low ejection fraction, left main stenosis, and genetic variation in the IL-6 promoter were established as significant independent risk factors for the survival of patients with three-vessel disease.Genetic and non-genetic predictors of 15-year survival in patients with chronic three-vessel disease (3VD) were investigated. Coronary angiography was performed on 810 subjects with symptoms of stable ischemic heart disease in 1998. The patients with 3VD were genotyped for 23 candidate polymorphisms covering the PPAR-RXR pathway, matrix metalloproteinase-2, renin-angiotensin-aldosterone system, endothelin-1, cytokine genes, MTHFR and APO E variants. Fifteen-year survival data were obtained from the national insurance registry. All data were available in the case of 150 patients with 3VD. Statistical analysis used stepwise Cox regression with dominant, recessive, or additive mode of genetic expression. Involved variables included age, sex, BMI, blood pressure, diabetes, ejection fraction, left main stenosis, previously diagnosed coronary stenosis, myocardial infarction in personal history, and coronary bypass along with polymorphisms pre-selected by log-rank tests. Out of the 23 polymorphisms, four were included in the model construction. SNP in the IL-6 gene rs1800795 (-174 G/C) has been found to be a significant predictor of survival. This SNP was in a linkage disequilibrium with rs1800797 (-597 G/A) in the same gene (D=1.0), which was also found to constitute a significant predictor of survival when rs1800795 was not included in the model construction. Age, increased BMI, diabetes, low EF, and left main stenosis were also significant predictors in all models. Age, increased BMI, diabetes, low ejection fraction, left main stenosis, and genetic variation in the IL-6 promoter were established as significant independent risk factors for the survival of patients with three-vessel disease
New trends in globalization of science and engineering education
Three decades ago most research and design were conducted in each country independently. But the world has become quite different since then. Global changes in technology and society changed the concept of an engineer. There is the need for engineers who can work effectively in changing global and technical environments. Less interest has been paid to the globalization of science and technology. This article reviews the stimulus, that impact the engineering profession and gives the recommendations concerning the profession of engineering, the technology and innovation
- …