109 research outputs found

    Geostatistical mapping and spatial variability of surficial sediment types on the Beaufort Sea shelf based on grain size data

    Get PDF
    The nearshore Beaufort Sea is a sensitive marine environment that is also the focus of oil and gas exploration. Offshore, the Beaufort Sea contains large potential reserves of hydrocarbons. Any future exploitation of these resources will present unique engineering challenges and will require an understanding of the processes that govern stability, nearshore morphology and sediment properties in the extensive shallow coastal zone of the Beaufort Sea shelf. Knowledge of the surficial sediment distribution is, therefore, necessary to provide a framework for understanding sediment stability, sediment transport, platform foundation conditions and to balance engineering challenges with environmental concerns, resource development and precautionary sustainable management. We describe an approach for a quality controlled mapping of grain sizes and sediment textures for the Beaufort Sea shelf in the Canadian Arctic. The approach is based on grain size data sampled during the period 1969-2008. A replenishment of grain size data since the 1980’s, as well as the consideration of correlating parameters (bathymetry, slope and sediment input) to a cokriging algorithm, amends the former way of mapping the surficial sediments of the Beaufort Sea shelf. Subsequent to data processing and applying autocorrelation, four single grids (clay, silt, sand and gravel) were generated from grain size data by ordinary kriging and cokriging. Cokriging also considered parameters that influence sediment texture such as bathymetry, slope, cost distance from the Mackenzie River and data anisotropy (directional dependency). The cokriging algorithm expressed as a variogram was quality controlled by cross-validation and predicted standard errors (PSEs). PSE values express a maximum deviation of modeled from the real values and therefore help to estimate the quality in these regions regarding the interpolation results for each grain size range. A sediment type classification scheme applied to the set of clay, silt, sand and gravel content maps resulted in a sediment type map of the Beaufort Sea shelf. The PSEs of ordinary kriging and cokriging have been compared and showed that the cokriging technique provided superior interpolation results for silt and slightly improved results for clay and sand. Cokriging was able to capture most of the small variations in the sediment texture distribution. Furthermore, reduced nugget effects confirmed that the cost distance grid was a better indicator for sediment texture when compared to bathymetry and slope. For gravel, ordinary kriging achieved better prediction probabilities and was, therefore, used for generation of the distribution map for this grain size class. The use of cokriging and ordinary kriging greatly enhanced interpolation estimates without additional sampling. Especially in nearshore regions, like the Beaufort Sea shelf, geostatistical interpolation techniques are very useful for evaluating seabed sediment texture because sampling is often difficult or impossible due to ice conditions or even prohibited near oil platforms. The described methodology along with the inclusion of recent data, provided an improved mapping of the surficial sediments of the Beaufort Sea shelf

    Default versus configured-geostatistical modeling of suspended particulate matter in Potter Cove, West Antarctic Peninsula

    Get PDF
    The glacier retreat observed during the last decades at Potter Cove (PC) causes an increasing amount of suspended particulate matter (SPM) in the water column, which has a high impact on sessile filter feeder? species at PC located at the West Antarctic Peninsula. SPM presents a highly-fluctuating dynamic pattern on a daily, monthly, seasonal, and interannual basis. Geostatistical interpolation techniques are widely used by default to generate reliable spatial information and thereby to improve the ecological understanding of environmental variables, which is often fundamental for guiding decision-makers and scientists. In this study, we compared the results of default and configured settings of three geostatistical algorithms (Simple Kriging, Ordinary Kriging, and Empirical Bayesian) and developed a performance index. In order to interpolate SPM data from the summer season 2010/2011 at PC, the best performance was obtained with Empirical Bayesian Kriging (standard mean = −0.001 and root mean square standardized = 0.995). It showed an excellent performance (performance index = 0.004), improving both evaluation parameters when radio and neighborhood were configured. About 69% of the models showed improved standard means when configured compared to the default settings following a here proposed guidelineFil: Neder, Camila. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Diversidad y EcologĂ­a Animal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Instituto de Diversidad y EcologĂ­a Animal; ArgentinaFil: Sahade, Ricardo Jose. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Diversidad y EcologĂ­a Animal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Instituto de Diversidad y EcologĂ­a Animal; ArgentinaFil: Abele, Doris. Alfred-Wegener-Institut, Helmholtz-Zentrum fĂŒr Polar- und Meeresforschung; AlemaniaFil: Pesch, Roland. Jade University of Applied Sciences; AlemaniaFil: Jerosch, Kerstin. Alfred-Wegener-Institut, Helmholtz-Zentrum fĂŒr Polar- und Meeresforschung; Alemani

    Video survey of deep benthic macroalgae and macroalgal detritus along a glacial Arctic fjord: Kongsfjorden (Spitsbergen)

    Get PDF
    In Kongsfjorden (Spitsbergen), we quantified the zonation of visually dominant macroalgal taxa and of detached macroalgae from underwater videos taken in summer 2009 at six transects between 2 and 138 m water depth. For the first time, we provide information on the occurrence of deep water red algae below the kelp forest and of detached macroalgae at water depth > 30 m. The presence and depth distribution of visually dominant red algae were especially pronounced at the outer fjord, decreased with proximity to the glacial front and they were absent at the innermost locations. Deepest crustose coralline red algae and foliose red algae were observed at 72 and 68 m, respectively. Brown algae were distributed along the entire fjord axis at 2–32 m. Green algae were only present at the middle to inner fjord and at areas influenced by physical disturbance at water depths of 2–26 m. With proximity to the inner fjord the depth distribution of all macroalgae became shallower and only extended to 18 m depth at the innermost location. Major recipients of detached macroalgae were sites at the shallower inner fjord and at the middle fjord below the photic zone at depths to 138 m. They may either fuel deep water secondary production, decompose or support carbon sequestration. Univariate and community analyses of macroalgal classes including detached macroalgae across transects and over depths reveal a considerable difference in community structure between the outermost sites, the central part and the inner fjord areas, reflecting the strong environmental gradients along glacial fjords

    Video survey of deep benthic macroalgae and macroalgal detritus along a glacial Arctic fjord: Kongsfjorden (Spitsbergen)

    Get PDF
    In Kongsfjorden (Spitsbergen), we quantified the zonation of visually dominant macroalgal taxa and of detached macroalgae from underwater videos taken in summer 2009 at six transects between 2 and 138 m water depth. For the first time, we provide information on the occurrence of deep water red algae below the kelp forest and of detached macroalgae at water depth > 30 m. The presence and depth distribution of visually dominant red algae were especially pronounced at the outer fjord, decreased with proximity to the glacial front and they were absent at the innermost locations. Deepest crustose coralline red algae and foliose red algae were observed at 72 and 68 m, respectively. Brown algae were distributed along the entire fjord axis at 2–32 m. Green algae were only present at the middle to inner fjord and at areas influenced by physical disturbance at water depths of 2–26 m. With proximity to the inner fjord the depth distribution of all macroalgae became shallower and only extended to 18 m depth at the innermost location. Major recipients of detached macroalgae were sites at the shallower inner fjord and at the middle fjord below the photic zone at depths to 138 m. They may either fuel deep water secondary production, decompose or support carbon sequestration. Univariate and community analyses of macroalgal classes including detached macroalgae across transects and over depths reveal a considerable difference in community structure between the outermost sites, the central part and the inner fjord areas, reflecting the strong environmental gradients along glacial fjords

    Habitat modelling of crabeater seals (Lobodon carcinophaga) in the Weddell Sea using the multivariate approach Maxent

    Get PDF
    The crabeater seal (Lobodon carcinophaga) is the most abundant Antarctic seal and inhabits the circumpolar pack ice zone of the Southern Ocean. Until now, information on important environmental factors affecting its distribution as well as on foraging behaviour is limited. In austral summer 1998, 12 crabeater seals of both sexes and different age classes were equipped with satellite-linked dive recorders at Drescher Inlet (72.85°S, 19.26°E), eastern Weddell Sea. To identify suitable habitat conditions within the Weddell Sea, a maximum entropy (Maxent) modelling approach was implemented. The model revealed that the eastern and southern Weddell Sea is especially suitable for crabeater seals. Distance to the continental shelf break and sea ice concentration were the two most important parameters in modelling species distribution throughout the study period. Model predictions demonstrated that crabeater seals showed a dynamic response to their seasonally changing environment emphasized by the favoured sea ice conditions. Crabeater seals utilized ice-free waters substantially, which is potentially explained by the comparatively low sea ice cover of the Weddell Sea during summer 1998. Diving behaviour was characterized by short (>90 % = 0–4 min) and shallow (>90 % = 0–51 m) dives. This pattern reflects the typical summer and autumn foraging behaviour of crabeater seals. Both the distribution and foraging behaviour corresponded well with the life history of the Antarctic krill (Euphausia superba), the preferred prey of crabeater seals. In general, predicted suitable habitat conditions were congruent with probable habitats of krill, which emphasizes the strong dependence on their primary prey

    Anatomy of a glacial meltwater discharge event in an Antarctic Cove

    Get PDF
    Glacial meltwater discharge from Antarctica is a key influence on the marine environment, impacting ocean circulation, sea level and productivity of the pelagic and benthic ecosystems. The responses elicited depend strongly on the characteristics of the meltwater releases, including timing, spatial structure and geochemical composition. Here we use isotopic tracers to reveal the time-varying pattern of meltwater during a discharge event from the Fourcade Glacier into Potter Cove, northern Antarctic Peninsula. The discharge is strongly dependent on local air temperature, and accumulates into an extremely thin, buoyant layer at the surface. This layer showed evidence of elevated turbidity, and responded rapidly to changes in atmospherically driven circulation to generate a strongly pulsed outflow from the cove to the broader ocean. These characteristics contrast with those further south along the Peninsula, where strong glacial frontal ablation is driven oceanographically by intrusions of warm deep waters from offshore. The Fourcade Glacier switched very recently to being land-terminating; if retreat rates elsewhere along the Peninsula remain high and glacier termini progress strongly landward, the structure and impact of the freshwater discharges are likely to increasingly resemble the patterns elucidated here

    Benthic meltwater fjord habitats formed by rapid glacier recession on King George Island, Antarctica

    Get PDF
    The coasts of West Antarctic Peninsula are strongly influenced by glacier meltwater discharge. The spatial structure and biogeochemical composition of inshore habitats is shaped by large quantities of terrigenous particulate material deposited in the vicinity of the coast, which impacts the pelagic and benthic ecosystems. We used a multitude of geochemical and environmental variables to identify the radius extension of meltwater impact of Fourcade Glacier into the fjord system of Potter Cove, King George Island. K-means cluster algorithm, canonical correspondence analysis, variance analysis and post-hoc Tukey's multiple comparison test were applied to define and cluster coastal meltwater habitats. A minimum of 10 clusters was needed to classify the 8 km2 study area into meltwater fjord habitats (MFH), fjord habitats and marine habitats. Strontium content in surface sediments is the main geochemical indicator for lithogenic creek discharge in Potter Cove. Furthermore, bathymetry, glacier distance and geomorphic positioning are the essential habitat explaining variables. Mean and maximum MFH extent amounted to 1 km and 2 km, respectively. Extrapolation of the identified meltwater impact ranges to King George Island coastlines which are presently ice-covered bays and fjord areas indicate an overall coverage of 200–400 km2 MFH, underpinning the importance to better understand the biology and biogeochemistry in terrestrial marine transition zones

    Ensemble modellingmodeling of Antarctic macroalgal habitats exposed to glacial melt in a polar fjord

    Get PDF
    Macroalgae are the main primary producers in polar coastal regions and of major importance for the associated heterotrophic communities. On King George Island/Isla 25 de Mayo, West Antarctic Peninsula (WAP) several fjords undergo rapid glacial retreat in response to increasing atmospheric temperatures. Hence, extended meltwater plumes laden with suspended particulate matter (SPM) are generated that hamper primary production during the austral summer season. We used ensemble modeling to approximate changes in the benthic productivity of an Antarctic fjord as a function of SPM discharge. A set of environmental variables was statistically selected and an ensemble of correlative species-distribution models was devised to project scattered georeferenced observation data to a spatial distribution of macroalgae for a “time of measurement” (“tom”) scenario (2008-2015). The model achieved statistically reliable validation results (true scale statistics 0.833, relative operating characteristics 0.975) and explained more than 60% of the modeled macroalgae distribution with the variables “hard substrate” and “SPM”. This “tom” scenario depicts a macroalgae cover of approx. 8% (63 ha) for the total study area (8 km2) and a summer production of approximately 350 t dry weight. Assuming a linear increase of meltwater SPM load over time, two past (1991 and 1998) and two future (2019 and 2026) simulations with varying SPM intensities were applied. The simulation using only 50% of the “tom” scenario SPM amount (simulating 1991) resulted in increased macroalgal distribution (143 ha) and a higher summer production (792 t) compared to the “tom” status and could be validated using historical data. Forecasting the year 2019 from the “tom” status, an increase of 25% SPM results in a predicted reduction of macroalgae summer production to approximately 60% (141 t). We present a first quantitative model for changing fjordic macroalgal production under continued melt conditions at WAP. As meltwater influenced habitats are extending under climate change conditions, our approach can serve to approximate future productivity shifts for WAP fjord systems. The reduction of macroalgal productivity as predicted for Potter Cove may have significant consequences for polar coastal ecosystems under continuing climate change

    The retrospective analysis of Antarctic tracking data project

    Get PDF
    The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations

    The retrospective analysis of Antarctic tracking data project

    Get PDF
    The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations.Supplementary Figure S1: Filtered location data (black) and tag deployment locations (red) for each species. Maps are Lambert Azimuthal projections extending from 90° S to 20° S.Supplementary Table S1: Names and coordinates of the major study sites in the Southern Ocean and on the Antarctic Continent where tracking devices were deployed on the selected species (indicated by their 4-letter codes in the last column).Online Table 1: Description of fields (column names) in the metadata and data files.Supranational committees and organisations including the Scientific Committee on Antarctic Research Life Science Group and BirdLife International. National institutions and foundations, including but not limited to Argentina (Dirección Nacional del Antártico), Australia (Australian Antarctic program; Australian Research Council; Sea World Research and Rescue Foundation Inc., IMOS is a national collaborative research infrastructure, supported by the Australian Government and operated by a consortium of institutions as an unincorporated joint venture, with the University of Tasmania as Lead Agent), Belgium (Belgian Science Policy Office, EU Lifewatch ERIC), Brazil (Brazilian Antarctic Programme; Brazilian National Research Council (CNPq/MCTI) and CAPES), France (Agence Nationale de la Recherche; Centre National d’Etudes Spatiales; Centre National de la Recherche Scientifique; the French Foundation for Research on Biodiversity (FRB; www.fondationbiodiversite.fr) in the context of the CESAB project “RAATD”; Fondation Total; Institut Paul-Emile Victor; Programme Zone Atelier de Recherches sur l’Environnement Antarctique et Subantarctique; Terres Australes et Antarctiques Françaises), Germany (Deutsche Forschungsgemeinschaft, Hanse-Wissenschaftskolleg - Institute for Advanced Study), Italy (Italian National Antarctic Research Program; Ministry for Education University and Research), Japan (Japanese Antarctic Research Expedition; JSPS Kakenhi grant), Monaco (Fondation Prince Albert II de Monaco), New Zealand (Ministry for Primary Industries - BRAG; Pew Charitable Trusts), Norway (Norwegian Antarctic Research Expeditions; Norwegian Research Council), Portugal (Foundation for Science and Technology), South Africa (Department of Environmental Affairs; National Research Foundation; South African National Antarctic Programme), UK (Darwin Plus; Ecosystems Programme at the British Antarctic Survey; Natural Environment Research Council; WWF), and USA (U.S. AMLR Program of NOAA Fisheries; US Office of Polar Programs).http://www.nature.com/sdataam2021Mammal Research Institut
    • 

    corecore