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Macroalgae are the main primary producers in polar coastal regions and of major

importance for the associated heterotrophic communities. On King George Island/Isla

25 de Mayo, West Antarctic Peninsula (WAP) several fjords undergo rapid glacial

retreat in response to increasing atmospheric temperatures. Hence, extended meltwater

plumes laden with suspended particulate matter (SPM) are generated that hamper

primary production during the austral summer season. We used ensemble modeling to

approximate changes in the benthic productivity of an Antarctic fjord as a function of SPM

discharge. A set of environmental variables was statistically selected and an ensemble of

correlative species-distribution models was devised to project scattered georeferenced

observation data to a spatial distribution of macroalgae for a “time of measurement”

(“tom”) scenario (2008–2015). The model achieved statistically reliable validation results

(true scale statistics 0.833, relative operating characteristics 0.975) and explained more

than 60% of the modeled macroalgae distribution with the variables “hard substrate”

and “SPM.” This “tom” scenario depicts a macroalgae cover of ∼8% (63 ha) for the total

study area (8 km2) and a summer production of ∼350 t dry weight. Assuming a linear

increase of meltwater SPM load over time, two past (1991 and 1998), and two future

(2019 and 2026) simulations with varying SPM intensities were applied. The simulation

using only 50% of the “tom” scenario SPM amount (simulating 1991) resulted in increased

macroalgal distribution (143 ha) and a higher summer production (792 t) compared to the

“tom” status and could be validated using historical data. Forecasting the year 2019 from

the “tom” status, an increase of 25% SPM results in a predicted reduction of macroalgae

summer production to ∼60% (141 t). We present a first quantitative model for changing

fjordic macroalgal production under continued melt conditions at WAP. As meltwater
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influenced habitats are extending under climate change conditions, our approach can

serve to approximate future productivity shifts for WAP fjord systems. The reduction of

macroalgal productivity as predicted for Potter Cove may have significant consequences

for polar coastal ecosystems under continuing climate change.

Keywords: seaweed distribution modeling, bioclimatic ecosystem change, distribution shift, macroalgae summer

production, South Shetland Islands, Antarctica

INTRODUCTION

The Western Antarctic Peninsula (WAP) is one of the regions
responding most dramatically to climate change (Kim et al.,
2018). In spite of the current phase of relative cooling over
the past two decades (Turner et al., 2016), the long-term
warming trend observed since the middle of the past century
has caused loss of massive ice shelves and retreat of over 80%
of all coastal glaciers along the Northern WAP (Cook et al.,
2016). The changes in the cryosphere have led to pronounced
ecosystem changes in the coastal systems (Barnes and Peck,
2008; Hoegh-Guldberg and Bruno, 2010; Sorte et al., 2010;
Constable et al., 2014; Sahade et al., 2015). A major aspect of
glacier retreat is the progressive subglacial and surface erosion
during the melting seasons which generates extended sediment
plumes mainly in inshore and glaciated areas (Monien et al.,
2017). Surface transport of eroded sediments produces shading
effects on, inter alia, benthic primary producers (Zacher et al.,
2009; Deregibus et al., 2017). On the other hand, the glacier
retreat is opening previously ice covered coastal seabed for new
colonization by benthic organisms, e.g., macroalgae (Quartino

et al., 2013; Barnes, 2017). Macroalgal communities not only
serve as secondary habitats for a huge number of epiphytes and
associated fauna but furthermore enhance local carbon burial

by reducing flow velocity above ground and trapping particles,
enhancing both inorganic, and organic deposition rates (Duarte
et al., 2013). Macroalgae and their epiphytes are the main benthic
primary producers of the coastal food web of Potter Cove (Iken
et al., 1998; Quartino and Boraso de Zaixso, 2008) and contribute
substantially to the dissolved and particulate carbon pool
(Reichardt and Dieckmann, 1985; Fischer and Wiencke, 1992).

Macroalgal colonization of the seafloor is mainly affected

by the availability of light, substrate type, grain size, steepness
of the bottom slope (topology), wave action, and ice scour
(Klöser et al., 1996; Zacher et al., 2009; Quartino et al., 2013;
Wiencke et al., 2014; Clark et al., 2017; Campana et al., 2018).
Especially in shallow water coastal systems, changes of sea ice
duration and timing, and coastal fast ice dynamics are important
drivers of benthic community composition and sustainability.
Clark et al. (2013) predicted that earlier ice break-up can
shift shallow water ecosystems from invertebrate dominated
to macroalgae dominated communities, in areas with hard

substrate. Macroalgal growth, productivity and vertical depth
range are constrained by light availability under sea ice and
sediment discharge plumes (DeLaca and Lipps, 1976; Wiencke,
1990a; Brouwer et al., 1995; Zacher et al., 2009; Clark et al.,
2015, 2017; Deregibus et al., 2016), and by increasing physical

disturbance from ice scour following sea ice break-up (Clark
et al., 2015). Hence, while glacial retreat eventually supports
increased macroalgal productivity on newly available hard
substrates, shading due to turbid surface waters may curtail the
net effect of macroalgal productivity to a currently unspecified
extent. For any calculation of production or carbon budgets, an
accurate quantification of coastal habitats suitable for macroalgal
growth is an important prerequisite.

Species distribution models (SDM) statistically analyze the
relationships between species distribution and the spatial
patterns of environmental variables (Guisan and Thuiller, 2005;
Elith and Leathwick, 2009; Dormann et al., 2012). They are
applied in natural resource management and conservation
planning (Miller, 2014), and form useful tools in ecosystem
change modeling under future climate scenarios (Pineda and
Lobo, 2009; Vorsino et al., 2014). Contrary to mechanistic
models, they are independent from detailed species knowledge
and require comparatively simple, widely available presence data.
Therefore, SDMs provide a feasible and practical framework
for an overarching environmental impact assessment (Elith and
Leathwick, 2009), including a range of species over large spatial
scales, especially in regions where difficult sampling conditions
complicate in situ surveys.

We apply an ensemble modeling (EM) approach that
combines a defined number of SDMs of best fit to an optimized
ensemble model, in order to assess the antithetic effects of
a retreating glacier on macroalgae distribution in the studied
fjord (Potter Cove, King George Island, South Shetland Islands,
Figure 1A). Based on a long-term data series at Carlini station
that covers the past 25 years, it is known that Potter Cove has
experienced an increase of summer sea surface temperatures
equaling 0.36◦C per decade between 1991 and 2010 (Schloss
et al., 2012). The same paper reports regional sea ice duration to
vary considerably between years, albeit with no significant trend
over time. Earliest formation of a solid sea ice cover was at the
end of April and latest ice breakout in the end of November
(Schloss et al., 2012), so that essentially no sea ice was and is
present during the algal summer growth period. Mean summer
meltwater stream discharge measured in the southeast of Potter
Cove over three summer seasons (2010–2012) amounted to a
suspended particulate matter (SPM) concentration of 283mg l−1,
while southwesterly areas are low in SPM (0–0.5mg l−1) (Monien
et al., 2017). A suite of environmental variables (raster data)
either causative or indicative for macroalgal distribution patterns
was included: bathymetry, slope, SPM, hard substrate occurrence
probability, distance to glacier front, total organic carbon (TOC).
Most of these raster data result from geostatistical models.
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FIGURE 1 | Overview map Antarctica and King George Island/Isla 25 de

Mayo: CH, Collins Harbor; EC, Esmerald Cove; MC, Marian Cove; EI, Ezcurra

Inlet; MaI, Mackellar Inlet; MI, Martel Inlet; AG, Anna Glacier; BD,

Bellinghausen Dome; CG, Crystal Glacier; DG, Drake Glacier; DoG, Domeyko

Glacier; EG, Eldred Glacier; FG, Fourcade Glacier; HI, Hektors Icefall; MDI,

Moby Dick Icefall; MG, Moczydlowski Glacier; PFG, Polar Friendship Glacier;

PG, Poetry Glacier; UG, Sher Glacier (A), seabed morphology of Potter Cove

(B), and photo of entering fresh and SPM-accumulated meltwater from

Fourcade Glacier into the inner cove (C).

Furthermore, we developed a set of model deviations, designed
to evaluate variations of SPM entry into the cove simulating
quantitative changes of sediment discharge as a function of
glacial retreat.

Here, we analyze macroalgal presence/absence “data” from
repeated surveys (2008–2015) in Potter Cove taking into account
new knowledge on effects of shading on macroalgal productivity
(Zacher et al., 2009; Deregibus et al., 2016). The data sets we used
come from long-term, interdisciplinary ecosystem monitoring
activities, unique for Antarctic shallow water systems. Our aim
was to run a distribution model, which predicts and defines the
potential ecological niche of macroalgae and allows for temporal
and spatial simulations of their response to environmental
changes in Potter Cove. The effects of climate-induced alterations
of sediment discharge on macroalgae distribution and inferred

productivity is shown for the “time of measurement (tom)”
scenario (2008–2015) as well as two past (1991 and 1998) with
less SPM in the water column and two future simulations (2019
and 2026) with increased SPM.

MATERIALS AND METHODS

Study Area
Potter Cove is a 4 km long and 2.5 km wide tributary fjord
to Maxwell Bay on the Southwestern coast of King George
Island (KGI) (Figure 1A). The fjord covers ∼10 km2 surface
area and is almost free of glacial ice cover since 2016,
surrounded by ice cliffs to the northeast. At the southern
coast, meltwater streams intersect gravelly beaches occasionally
occupied with grounded ice blocks (Figure 1B). The inner cove
(6.5 km2) is divided into different basins by transversal ridges,
remnants of underwater moraines, which were formed during
late Holocene glacial advances or still stands (Wölfl et al.,
2016). Ice melting and erosive processes (tides and waves) have
given rise to newly exposed inshore hard bottom substrates,
including a small rocky island (Isla D) of 70m above-sea level
diameter (Figures 1B,C), which is currently colonized by mixed
communities of macroalgal and invertebrate fauna (Campana
et al., 2009; Quartino et al., 2013; Lagger et al., 2017).

In the north and west, the cove is surrounded by the rapidly
retreating Fourcade glacier as part of the Warszawa Icefield,
which has maximum elevations of ∼470m (Figure 1A). From
1999 to 2008, the annual average frontline retreat rate up to
about 40m y−1 on the Potter Peninsula (Rückamp et al., 2011).
In recent years, as the glacier moved on land, slowing retreat
rates were documented (Falk et al., 2018). The newly ice-free
subglacial rock bed and surface area are subject to erosion
(Monien et al., 2011, 2017; Rückamp et al., 2011) resulting in
higher sediment discharge loads during warmer summer melt
seasons (Figure 1C). This affects coastal marine areas up to 2 km
distance from land (Jerosch et al., 2018). Monien et al. (2017)
estimated an approximate sediment load of 4 × 105 tons y−1

entrained locally into the surface water layer.
The Argentinian research base Carlini (former Jubany) with

the German-Argentinian collaborative laboratory “Dallmann”
is located at Potter Cove. The Potter Cove ecosystem and
its responses to rapid glacial retreat have been extensively
studied and monitored over the past decades. Within the recent
period (2008–2017), the collaborative research was stimulated
by two EU supported actions, IMCOAST (www.imcoast.org)
and IMCONet (www.imconet.eu). Project data, collected and
processed within these research programs, were compiled
into a georeferenced database. The data sets are available
at www.pangaea.de.

Modeling Approach
Geostatistical algorithms were applied in ArcGIS R© to generate
raster data from sampling sites of environmental data, which
were quality-assessed by statistical mean values such as Standard
Error and Root-Mean-Square (Supplementary Figure 1, data
sets and processing). Secondly, the response variable, a spatial
snapshot of the macroalgal communities in Potter Cove
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was compiled, to statistically analyze the spatial response of
macroalgae to environmental drivers, and to simulate their
spatial distribution by changing environmental conditions.

The biodiversity modeling package Biomod2 Version 3.1-
64 described in detail in Thuiller et al. (2014) was used
in the R statistics environment (R-3.1.2, RCoreTeam, 2014).
The modeling technique includes a set of commonly used
algorithms for SDMs, namely five machine learning methods:
Random Forest (RF), Maximum Entropy modeling (MaxEnt),
Artificial Neural Networks (ANN), Generalized Boosted Models
(GBM), Classification Tree Analysis (CTA); two regression
models: Generalized Additive Models (GAM), and Generalized
Linear Models (GLM), furthermore, the climate-envelope-model
Species Range Envelope (SRE), the non-parametric regression
Multiple Adaptive Regression Splines (MARS), and Flexible
Discriminant Analysis (FDA). For explanation of the SDM
algorithms refer to Elith and Graham (2009). Uncertainty is
expressed by the difference between alternative realizations
represented as deviations in response curves. For validation,
two evaluation metrics, True skill statistic (TSS) and Relative
Operating Characteristic (ROC) were applied within the
Biomod2 package.

The number of input variables may constrain the complexity
of models (Dormann et al., 2013). Accordingly, the variable
selection decreases the resulting variance of regression
parameters, improves processing time, reduces errors during
processing, prevents possible misinterpretation of results,
and eventually permits the evaluation of main abiotic drivers
through an index of variable importance for shaping species
distribution (Guisan and Thuiller, 2005; Elith and Leathwick,
2009; Merow et al., 2014). Testing the method by Dormann
et al. (2013) shows that regression-type approaches (e.g.,
generalized linear models) and machine-learning techniques
(e.g., MaxEnt) work reliably (i.e., condition number <10)
if used under moderate collinearity. Here, the explanatory
variables used for the SDMs were chosen through an iterative
process (Supplementary Material). Environmental variables
that are highly correlated with macroalgae presence/absence
data (Pearson correlation coefficient | r | ≥ 0.7) as well as
redundant variables were omitted. Further, variables with a low
mean variable importance value (≤0.1) were excluded during
an iterative implementation of the ensemble modeling. The six
remaining environmental variables are ranked below by mean
variable importance value (Table 1).

Macroalgae and Hard Substrate Data
For a “time of measurement” (“tom”) status of macroalgae
distribution, presence and absence data sampled during 2008–
2015 were compiled from threemain sources: video, imagery, and
hydroacoustic data (Supplementary Table 1). The macroalgae
presence/absence data set covers the total environmental
data ranges obtained in the study area and are densely
distributed, which, according to van Proosdij et al. (2016),
supports the accurate operability of ensemble SDMs (Figure 2A).
Additionally, three previously unpublished video transects
recorded in 2011–2012 were converted to frames, georeferenced,
and analyzed for macroalgal distribution data following the
methodology described in Quartino et al. (2013). A chessboard
patterned hydroacoustic scan (RoxAnn GDX) of the seabed was
accomplished in 2012 (Figures 2A,B). An unsupervised visual
classification method was used to annotate macroalgae and
substrate from the hydroacoustic data set, which was validated
by imagery of a drop-down camera (Hass et al., 2016). We
considered these data less reliable (high precision in position
but low entropy) than data obtained from video footage and
photographs [lower precision in position but high entropy
(section Species DistributionModeling)]. Areas deeper than 45m
marked as “macroalgae present” on hydroacoustic scans were
excluded, since macroalgal vertical distribution was only verified
to this depth (video footage in Peñón de Pesca). As macroalgae
occur only on hard substrates, the following assumptions were
made for the data sets in Table 1: (1) substrate coarser than
“gravelly sand” is assigned as hard substrate. (2) at locations
with soft sediment the absence of macroalgae is assumed,
(3)“macroalgae present” sites were classified as hard substrate if
macroalgae coverage was 100% and the sea floor was not visible.

The first description of the spatial extent of sublittoral
macroalgae coverage in Potter Cove was published by Klöser
et al. (1996). Macroalgae distribution was manually extrapolated
toward depth based on small-scale dive observations (video
transects) recorded down to 30m water depth during the
summer season 1993/1994. For reason of comparability, we
georeferenced and clipped the published map to the extent
of our study area (785.31 ha) and the areas assigned to
macroalgae coverage were digitized (109.63 ha, 13.96%). A mean
macroalgal summer production of 5.55 t ha−1 was calculated
based on the accumulated monthly production published by
Quartino and Boraso de Zaixso (2008). Their sampling was
performed by scuba diving at six sites, from January to

TABLE 1 | Variables included, data sources and processing (more detailed information in Supplementary Material and Supplementary Table 1).

Year Original data Data processing Data source

Macroalgae [1/0] 2008–2015 various methodologies georeferencing pres./abs. data various (Supplementary Table 1)

Hard substrate [prop.%] 2010–2013 various methodologies Indicator Kriging various (Supplementary Table 1)

SPM (inferred)[none] 2013 satellite image band 4 of multiband image DigitalGlobe. (2014)

Distance to glacier [m] 2013 raster Euclidean distance to coastline DigitalGlobe. (2014)

Bathymetry [m] 2012 multi- and single beam Interpolation to coastline =̂ 0m Jerosch and Scharf (2015)

TOC [mass%] 2012 push core samples Empirical Bayesian Kriging Monien et al. (2014); unpubl.

Slope [◦] 2012 multi- and single beam bathymetry derivative Jerosch and Scharf (2015)
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FIGURE 2 | Input data for the spatial distribution modeling (SDM) in Potter Cove located between Barton and Potter Peninsula [map between (A) and (B)]:

presence/absence macroalgae (A), presence/absence hard substrate (B) and six relevant environmental variables; probability of hard substrate (C), suspended

particulate matter (SPM) (D), distance to the glacier front (E), bathymetry (F), total organic carbon (TOC) (G), and slope (H), ordered by the mean variable importance

value resulted from the modeling process. For data sources please refer to Table 1 and Supplementary Table 1. Projection: WGS84, UTM 21S.

March 1994, 1995, and 1996. Three sampling units of 1 m2

were placed at 0, 5, 10, 20, and 30m along 26 transects
perpendicular to the shore. Biomass data from two sites obtained
during two summer seasons 1994–1995 and published growth
rates (Wiencke, 1990a,b; Gömez and Wiencke, 1997) were
used to calculate the macroalgal production. Quartino and
Boraso de Zaixso (2008) assumed biomass as a mean over
the water depth of 0–30m. We used the same assumptions
to estimate the macroalgal summer production per area in
the simulations.

The hard substrate presence and absence data set resulted
from several data sources acquired between 2010 and 2015 with
different methodologies: van Veen grab samples, video material
and photographs, acoustic data, and derivatives inferred from
assumption 3 as defined above. The final data set was interpolated
using indicator kriging, which produced a probability raster
of occurrence (Figure 2C). For detailed information, see
Supplementary Material and Supplementary Table 1.

Environmental Variables
The use of the Biomod2 spatial-temporal framework requires
the definition of thematic maps (raster data) that describe the
macroalgae related ecosystem.

The spatial coverage of a SPM plume (snapshot of a normal
situation) is visible on the satellite image from 2013/03/07
(DigitalGlobe., 2014) and was derived from its 4th image band.
The continuous raster cell values of the satellite image provide
relative SPM values with a high spatial resolution of the SPM data
set; the darker the cell color the higher the corresponding SPM
value (Figure 2D). SPM is a highly dynamic variable both and
space and time depending on the weather conditions. It is mostly
connected to air temperature and wind speed and direction. The
geostatistical data analysis revealed that the interpolation of a
consistent data set would not result in a reliable raster data set
representing e.g., seasonal mean values. We therefore decided
to use an SPM snapshot, which represents an accurate and
spatially consistent data set of the SMP plume extent and relative
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SPM amount in the water characteristically for normal weather
conditions on King George Island according to meteorological
data (doi: 10.1594/PANGAEA.80825, doi: 10.1594/PANGAEA.
808250, doi: 10.1594/PANGAEA.758314).

The mean Euclidean distance to the nearest glacier front
(Figure 2E) was calculated in ArcGIS 10.5.1 based on the glacier
front digitized from the satellite image (DigitalGlobe., 2014).

The bathymetry raster (Figure 2F) with a resolution of 5
× 5m was processed based on single beam data from the
Argentinean Antarctic Institute (Instituto Antártico Argentino,
IAA) published in Wölfl et al. (2014), and multibeam data
acquired by the United Kingdom Hydrographic Office (UKHO,
2012) with a cell size of 5 × 5m. A coastline digitized
from the satellite image (DigitalGlobe., 2014) supplemented the
interpolation process. The “Topo to Raster” tool in ArcMap
10.3 was used to merge the three data sets, with the coastline
representing the 0-m-contour for the interpolation process
(“contour type option”). For a detailed description of the data
processing refer to Jerosch and Scharf (2015).

The TOC [mass%] raster (Figure 2G) was interpolated using
the top sediment layers (up to 2 cm) of 47 published (Monien
et al., 2014) and 10 unpublished (Monien, unpublished) push
core samples taken in 2010. The statistical errors of several
interpolation methods (e.g., IDW, Empirical Bayesian Kriging,
Indicator, Ordinary, and Co-Kriging) with changing settings
were compared (Supplementary Material).

The slope (Figure 2H) is defined as the seabed gradient in the
direction of maximum inclination (e.g., Lundblad et al., 2006;
Wilson et al., 2007) and was calculated from the directional East-
West and North-South gradient of the processed bathymetry
raster (DEM Surface Tools, Jenness, 2013).

Clipping and bilinear resampling of the environmental raster
input to the same resolution of 5× 5m was processed on a raster
stack in an R statistics environment (R-3.1.2, RCoreTeam, 2014).
All geospatial raster data were projected to UTM21S (WGS1984)
coordinates, clipped and resampled to the resolution and the
extent of a template raster for the SDM.

Projection Induced by Climate Change
Even if climate warming slows down during a period of transient
cooling (Turner et al., 2016; Oliva et al., 2017), the time lag of
ice mass response to the current climatic conditions will cause
further glacial retreat until the glacier is in equilibrium with
the climatic boundary conditions (Osmanoglu et al., 2014; Falk
et al., 2018). “Equilibrium” means mass accumulation equaling
ablation resulting in an overall mass balance of zero. For the
future scenarios, we neglected the process of hard substrate
variation in the model since the glacier is currently on land.
For the past scenarios we referred to the ice-free areas of the
years 1988 and 1995 based on the glacier front lines published
by Rückamp et al. (2011). Assuming constancy of the present
retreat rates on land in the future, we can compute changes of the
present ice-mass extent, which is between 35 and 90m terrestrial
elevation of the glacier equilibrium line, and the 110 or 230m
altitude of the Warzawa Icefield equilibrium line. Under these
future scenarios, the distance melt water would travel through
lose rocks and thawing soil would roughly double or triple

(Falk et al., 2018). Based on these predictions for glacial retreat
and assuming a linear increase of SPM discharge (derived from
Schloss et al., 2012) with increasing distance between the glacier
front and the coastline, we contrived four different modeling
scenarios for a predictive analysis with varying amounts of
SPM entering the Potter Cove marine system. Scenarios 1
and 2 represent conditions with lower SPM discharge (0.75-
and 0.5-fold). Scenarios 3 and 4 represent an increasing rate
of meltwater discharge (moderate to intense) into the system
(1.25- and 1.5- fold). For each of the scenarios, supplemental
ensemble models (EMs) were calculated that consider the same
modeling approaches identified for the “tom” status best fit.
The only difference consists in the modified SPM raster cell
values: scenario 1: assuming 50% of the “tom” status SPM raster
value, scenario 2: 75%, scenario 3: 125%, scenario 4: 150%
(Table 2). The appropriate years representing the scenarios were
estimated by a linear extrapolation of the significant regression
line published by Schloss et al. (2012) for Potter Cove summer
SPM data between 1990 and 2010. We set the estimated SPM
value therein for the year 2010 (17.296mg m−3) as 100% and
used this value as a basis to identify years for the simulated
scenarios as follows: years 1991 (scenario 1), 1998 (scenario 2),
2019 (scenario 3), and 2026 (scenario 4). Scenario 3 qualifies
as “future scenario” because the “tom” status of macroalgae
presence data relates to data acquired between 2008 and 2015.

Biomod2 Model Calibration and Validation
Species Distribution Modeling
We applied ten different modeling algorithms and two different
prevalence-independent (discrimination) performance metrics,
the threshold-independent Relative Operating Characteristic
(ROC), and the threshold-dependent True Skill statistic (TSS)
scores with 10 permutations to test the importance of each
variable relevant for the modeled response variable within the
Biomod2 environment (section Modeling Approach). Single
models were run with repeated random data splits; hence, 70%
of the data were used to train the models, while the residual
30% of data were used to validate model performance. Due
to the cross-validation procedure, each of the 10 algorithms
was replicated 20 times for the model calibration, amounting
to a total number of 200 modeled results. Hydroacoustic data
were weighted by 0.75 and image data by 1 (section Species
Distribution Modeling).

Model Validation
The area under the ROC curve (AUC) validation statistic is
a commonly used threshold independent accuracy index that
ranges from 0 to 1 (1 = highly accurate prediction, 0.5 =

prediction no better than random) for assessing the capacity
of species distribution models. The ROC index defines the
probability that an SDM will rank a presence locality higher than
an absence (Pearce and Ferrier, 2000; Liu et al., 2009) and is
therefore not well-suited for modeling presence only data (van
Proosdij et al., 2016). According to Pearce and Ferrier (2000),
rates higher than 0.9 indicate excellent discrimination because
the sensitivity rate is high, relative to the false positive rate.
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TABLE 2 | Macroalgae progression over simulated time spans (1991-2026) depending on varying SPM intensities (*Probability of macroalgal occurrence >75%; +after

Quartino and Boraso de Zaixso, 2008 applying a mean summer production of 5.55 t ha−1).

Scenario (Year) SPM (%) in the cove Area (ha) covered by macroalgae* Macroalgal summer production [t]+ Macroalgal coverage [%] of “tom” status

1 (1991) 50 142.75 792.26 +127.02

2 (1998) 75 100.25 556.39 +59.43

“tom” (2008–15) 100 62.88 348.98 t 100.00

3 (2019) 125 25.39 140.91 −59.62

4 (2026) 150 7.4 41.07 −88.23

The deviance between observations and predictions (the
subtraction of the output score from 1 for presences and from
0 for absences) throughout the whole cove may reflect the areas
where commission error (negative deviance) and omission error
(positive deviance) spatially coincide (Lobo et al., 2008). The
deviances between observations and predictions are expressed
as under- and overestimations as follows: underestimation is
defined as−97 to−50% deviance of measured to predicted value
(e.g., measured 1 for presence and measured 0.25), moderate
underestimation −50 to −25%, good −25 to 25%, moderate
overestimation 25 to 50%, overestimation 50 to 91% (e.g.,
measured 0 for absence and measured 0.75). Besides over
and underestimation, this itemization also reveals the regional
distribution of the errors; information, which is not provided by
the TSS and the ROC scores.

As the AUC is used for SDM evaluation (e.g., Vorsino et al.,
2014), but also has been criticized (e.g., Jiménez-Valverde, 2012),
we also provide the evaluation criterion TSS, recommended by
Allouche et al. (2006). The TSS is a measure of performance
of species distribution models and prevalence independent and
favors the combination of binary predictions which best separate
presences from absences. It corresponds to the sum of sensitivity
and specificity minus one. The “sensitivity” value denotes
the proportion of presences correctly predicted, whereas the
“specificity” value denotes the proportion of absences correctly
predicted (Barbet-Massin et al., 2012). TSS statistic ranges from
−1 to +1 and tests the concordance between the expected
and observed distribution. A TSS value of +1 indicates perfect
agreement between the observed and expected distributions,
whereas the value 0 defines a model which has a predictive
performance no better than random. An evaluation metric
quality measure of 0.7 or higher indicates good or very good
performance of the model (Thuiller et al., 2010).

Ensemble Modeling
The application on biomod2 is one of several current approaches
to modeling species’ distributions using presence/absence data
and environmental data. Because of stochastic elements in
the algorithm and underdetermination of the system (multiple
solutions for the model optimization), no unique solution is
produced. Such ensemble models have been used extensively
in credit scoring applications and other areas because they are
considered to be more stable and, more importantly, predict
better than single classifiers (Lessmann et al., 2015). They are
also known to reduce model bias and variance (Kim et al., 2006;

Tsai andHsiao, 2010). Ensemble classifiers pool the predictions of
multiple base models. Much empirical and theoretical evidence
has shown that model combination increases predictive accuracy
(Paleologo et al., 2010; Finlay, 2011). Biomod2 proposes an
ensemble modeling approach implying the synthesis of two
or more SDMs of best fit to a single ensemble model (EM),
thus to improve model accuracy by including an indication of
fuzziness and to asses model congruence. This inclusive statistical
procedure improves the stability and accuracy of predictive non-
linear models, because it integrates uncertainties in parameter
values and model structure. The approach has already been
applied for ecosystem degradation by Vorsino et al. (2014) and
for Antarctic sea-level rise simulations by DeConto and Pollard
(2016). EMs consider uncertainties such as dependence on the
initial conditions and partially incomplete model formulation.

In this study, the EM was enhanced successively by the
systematic parameter selection and an optimization of the TSS
threshold by visual revision. The total number of alternative
realizations (200) was scaled by a binomial GLM to ensure
comparable results. The EM was calculated as the mean value of
135 alternative realizations with a high TSS value (>0.7) defined
as “good” prediction accuracy (Thuiller et al., 2010).

RESULTS

Model Quality Assessment
The algorithm-ranking by TSS and ROC scores for all alternative
realizations (Figure 3) shows best performance of the RF
algorithm, followed by CTA, GBM, MaxEnt, and GAM. All 20
realizations of these five algorithms were incorporated into the
EM. Furthermore, the majority of MARS (16) and FDA (14)
realizations had mean TSS scores clearly >0.7 and a ROC >0.9.
Five ANN realizations barely achieved a TSS evaluation score
between 0.70 and 0.72 and a ROC between 0.90 and 0.91. GLM
and SRE performance was comparatively weak. Hence, these
algorithms were not included in the EM. The lineup of the most
suitable realizations for each algorithm (Figure 4) highlights
the spatial distinctions between the results. Most of the models
showed good or very good performance in terms of predictive
power and accuracy, with highest ROC values of 0.980 and 0.941,
obtained for the RF and CTA models, respectively. The poorest
performance was shown by the SRE model which had a mean
ROC of 0.768. Nevertheless, the mapped distribution patterns
varied remarkably depending on the model used. For response
curves see Supplementary Figure 2. The EM predicts the spatial
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FIGURE 3 | Averaged evaluation scores of Relative Operating Characteristic

(ROC) and True skill statistic (TSS) ordered by modeling algorithms (20 runs

each) indicate best performance of Random Forest (RF) whereas Species

Range Envelope (SRE) was the least well-performing modeling algorithm. The

points represent the averaged values; the deviation bars indicate standard

deviation of the evaluation scores across each group and number of runs

included in the ensemble model (EM).

occurrence of macroalgae in Potter Cove with a high statistical
reliability (TSS 0.833/ROC 0.975).

A validation across all 135 models revealed a ranking
of environmental variables accounting for the “tom” status
macroalgae distribution (Figure 5A) by mean variable
importance values from high to low as follows: probability
of hard substrate occurrence (36.62%), SPM (24.83%), distance
to glacier front (12.35%), TOC (9.69%), bathymetry (9.08%),
and slope (7.44%). The percent values were independently
determined by the model and no interactions were taken into
account between the variables.

Simulation of Macroalgal Distribution in
Potter Cove
In the “tom” status EM (2008–2015) in Figure 5A, macroalgae
communities are concentrated on the northern and northwestern
shores of Potter Cove, with diminishing occurrence probability
toward the inner glacier-proximal cove section (northeast). The
northwestern areas represent hard substrates exposed by glacial
retreat. A second region of high occurrence is located close
to the southeastern edge of the cove opening into Maxwell
Bay (Peñón 1) which has a longer history as ice-free area.
Areas of uncertainties and differences between the alternative
realizations were determined based on standard deviation and
under- and overestimated areas (Figure 5B). Small standard
deviations were typical for the deeper parts of the cove
where macroalgae are absent. The high scores of standard
deviations in the northern part of Potter Cove resulted from
small-scale variability in the binary-coded macroalgae input
data set of presence (1) and absence (0), located in close
vicinity to each other, as well as from areas of poor sample
density. Where the standard deviation was high, the model

revealed overestimations, preferably in areas of macroalgae.
Here, the model has difficulties to represent the small-scale
variability of input data (presence alternates with absence at
very close range) and predicts macroalgae presence in areas of
general absence of algae. In contrast, only few underestimations
occurred in the inner cove (measured presence predicted
as absence).

Macroalgae (water depth of >30m, hard substrate) cover
62.88 ha of the 785.31 ha Potter Cove total bottom area, which
equals 8.01% macroalgae coverage in Potter Cove. Applying the
mean macroalgal summer production of 5.55 t ha−1 estimated
from Quartino and Boraso de Zaixso (2008) the mean summer
macroalgae production for the study area in Potter Cove is
approximated to 348.98 t in the “tom” scenario (2008-2015). Of
the total modeled macroalgal summer production, 5.22% are
estimated for the newly ice-free areas due to glacier retreat (3.48
ha), which amounts to 19.31 t (Supplementary Figure 3).

The scenario maps derived from the “tom” EM display the
potential macroalgae distributions, based on the assumptions of
varying SPM transport dynamics into Potter Cove (see section
Biomod2 Model Calibration and Validation) relating to different
states of glacier retreat in past and future. Scenario 1 (simulating
the state in 1991; Figure 6A) and scenario 2 (1998; Figure 6B)
show more spatially extended macroalgae occurrence probability
under reduced SPM input and thus higher light availability in the
water column. Especially in the southern peripheral region and in
the inner glacial proximal cove section of Potter Cove, macroalgal
presence probability becomes significantly greater compared
to the 2008–2015 “tom” status. We validated our modeling
approach for the past by overlaying the macroalgae distribution
obtained in scenario 1 (status 1991) with the digitized map of
Klöser et al. (1996) and the original in situ data from 1994 to
1996 (Quartino et al., 2005), and with the coastline of Fourcade
glacier from 1995 (Rückamp et al., 2011). Almost everywhere, the
predicted areas match fully with the in situ data (Figure 5), which
additionally confirms the validity of our model.

Scenarios 3 (year presumed 2019) and 4 (2026) in
Figures 6C,D assume increased sediment stress in the near
future and predict a decrease of areas inhabited by macroalgae
compared to the “tom” (2008–2015) scenario. The most
significant negative changes are predicted for the northwestern
area close to the outer cove (Peñón de Pesca).

As a general trend, macroalgal coverage is decreasing between
the past, over the “time of measurement,” toward the future
scenarios, under conditions of increasing SPM runoff into the
cove, the basic assumption in our simulations (Figure 6). This
results in a decrease of macroalgal summer production over
time. In scenario 1 (1991) the macroalgae suitable habitat area
(probability >75%) extends over 142.75 ha. Applying the mean
macroalgal summer production estimate of 5.55 t ha−1 (Quartino
and Boraso de Zaixso, 2008) this equals 792.26 t. In scenario
2 (1998) only 100.25 ha are covered by macroalgae equaling
556.39 t. In contrast, macroalgae area extension decreases to
25.39 ha (=̂ 140.91 t) in scenario 3 and to only 7.4 ha
in scenario 4 (=̂ 41.07 t). Distribution maps for macroalgae
under varying SPM conditions (Figure 6) are available at
doi: 10.1594/PANGAEA.854410 (Jerosch et al., 2015).
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FIGURE 4 | Most accurate results according to TSS and ROC measures for macroalgae distribution per SDM-algorithm are shown (A–K). The models are ordered by

their predictive quality according their True skill statistic (TSS) and Relative Operating Characteristic (ROC) scores. The probability of macroalgae occurrence is given in

%. Note that none of the models generated with GLM (J) and SRE (K) scored for the implementation into the EM (TSS <0.7). The final mean Ensemble Model (I) is

highlighted with a green frame.

DISCUSSION

Enhanced spatial knowledge of suitable habitat conditions for

macroalgal growth allowed for refined estimations of macroalgal

summer production in Potter Cove on KGI, compared to
previously published estimates based on straight forward

up-scaling. We deem the integrative EM approach preferable
over single SDM based approaches, as it accounts for uncertainty
(e.g., initial conditions, imperfect model formulation), andmodel
congruence (e.g., Vorsino et al., 2014; DeConto and Pollard,
2016). In agreement with the ecology and physiology of benthic
macroalgae (Wiencke and Clayton, 2002; Hanelt et al., 2003;
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FIGURE 5 | Ensemble model (EM) probabilities of macroalgae occurrence mean (A) and the standard deviation (B). The standard deviation map also provides the

mean error (ME) between prediction and measured value (presence/absence) and thus, distinguishes between under and overestimated areas of projected

macroalgae. Underestimation: −97 to −50% deviance of measured to predicted value (e.g., measured 1 for presence and measured 0.25), moderate underestimation

−50 to −25%, good −25 to 25%, moderate overestimation 25 to 50%, overestimation 50 to 91% (e.g., measured 0 for absence and measured 0.75).
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FIGURE 6 | Potential macroalgae distribution [%] under the assumptions made for scenarios 1–4 (A–D). Glacier fronts from 1988 and 1995 (Rückamp et al., 2011)

provide an approximation of ice-free area extend in the cove for the past scenarios 1 and 2 (A,B).

Zacher et al., 2009; Hurd et al., 2014), the present EM identified
hard substrate occurrence and SPM distribution in surface
waters as the main drivers for macroalgae distribution and
colonization in this Antarctic fjord. Sufficient light availability
is, indeed, an important prerequisite for a positive carbon
balance and the build-up of macroalgal biomass (Gomez et al.,
1997; Deregibus et al., 2016). On the other hand, the model
does not include important factors such as ice scouring in the
inner part of the cove (Deregibus et al., 2017), sedimentation
effects on algal grazers (Zacher et al., 2016), and it does not
account for obvious interactions and feedback loops between
different input variables. Newly opening hard substrate surfaces
in glacial proximity can be smothered and buried under sediment
deposits as glacial run-off continues, reducing macroalgae
habitat availability.

To our knowledge, we here present the first correlative
distribution model of macroalgae in polar regions. The SDM was
evaluated reliably (TSS 0.833/ROC 0.975) by using independent
field data for past and present scenarios. Both continuous

performance metrics such as AUC and binary performance
metrics such as TSS are independent of prevalence (i.e.,
proportion of spatial coverage). They are often employed as
they are frequently implemented in software solutions such as
Biomod2. Prevalence-independent metrics are, however, limited
to measuring discrimination and cannot be used to assess
calibration. Binary metrics often select models that have reduced
ability to separate presences from absences, which can lead
to uncertain estimates (Lawson et al., 2014). We applied 20
runs for each algorithms, generating 20 AUC and TSS values
for each model, to provide a more informative evaluation
of model accuracy than only one estimate. We used AUC
and TSS, two evaluation methods found in many published
examples (e.g., Hijmans, 2012; Vorsino et al., 2014), to compare
the modeling results obtained with different algorithms for
our data set. However, we agree with the recommendation
of Lawson et al. (2014) and Muscarella et al. (2014) to
use the wider application of prevalence-dependent continuous
metrics, particularly likelihood-based metrics such as Akaike’s
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Information Criterion (AIC), to assess the performance of
presence–absence models. As AIC has not yet been implemented
in Biomod2, combination with the R package ENMeval
(Muscarella et al., 2014) is recommended for future SDM studies.

Furthermore, the model could be improved by applying
structured, spatially segregated allocation of data to calibration
and validation data sets instead of random splitting, to assess
the ability of the model to predict more distant locations and
to conduct spatially independent model evaluations (Dormann
et al., 2007; Hijmans, 2012; Muscarella et al., 2014; Roberts
et al., 2017). This is especially recommended in studies in which
training and test data sets are not spatially independent in all
areas as was the case in Potter Cove. This approach could have
in particular improved the predictions in the northern part
of the cove where under- and overestimations occur in close
vicinity (Figure 5; Barnes and Clarke, 2011; Lawson et al., 2014;
Muscarella et al., 2014; Boavida-Portugal et al., 2018).

The model considers two decisive but opposed effects
influencing the distribution of macroalgae: new ice-free areas
due to tidewater glacier retreat provide new potential habitats
while increased sediment run-off reduces light availability, the
prerequisite for algal growth (Quartino et al., 2013). The
extrapolation of a linear regression on long-term SPM data
(1991–2010) (after Schloss et al., 2012) to the year 2026 was used
to simulated two past and two future scenarios with distinct SPM
levels. We studied macroalgae distribution in the year of glacier
transition on land; hence no more newly ice-free areas can be
expected in future Potter Cove scenarios. However, apparently
the time elapsed since ice retreat has not allowed for appreciable
macroalgal growth in every section of the newly available habitat.
Hence, the model predicts further alterations of the macroalgal
habitat in Potter Cove as long as SPM concentrations increase
during growing season and a likely decrease in macroalgae
biomass, albeit with new colonization of recently ice-free and still
not overgrown habitats in the inner cove.

The EM predicts decreasing macroalgal area coverage for
particular scenarios with increasing sediment run-off through
the past to the recent past (“tom” status) and into the future.
Both, the predicted “tom” status (2008–2015) and the past
1991 scenario 1 could be confirmed by comparing to empirical
knowledge of past macroalgal distribution, based on underwater
video and photographic transects. Macroalgae presence/absence
data (Figure 2A) reveal low macroalgae distribution along the
south coast, which explains low probability values in the
“tom” scenario, whereas future and past scenarios show ample
macroalgae probabilities. This effect is caused by hard substrate
availability and by local variation of SPM. Both, measured and
then interpolated SPM data, as well as the satellite pixels, show
slightly lower SPM values along the southern coast. However,
SPM residence time and plume extension are highly variable in
space and time. Nevertheless, we can predict low macroalgae
probability on the southern coast because the currents push the
SPM plume (Lim et al., 2013) toward this side, and because the
sandy bottom is covered by smaller and looser stones and rubble
rather than by rocks as on the north coast.

The modeled mean summer macroalgae production for
1991 is 23% greater than the production estimated for 1994–
1995 (790 vs. 608.65 t) based on phototransects (Klöser et al.,
1996; Quartino and Boraso de Zaixso, 2008) and calculated
for exactly the same spatial extent of study area. We attribute
the main difference to a methodological underestimation due
to the low data density. According to the modeled results,
there is indication for a higher macroalgae coverage at the
northern coast of the cove compared to the study of Klöser
et al. (1996) (Supplementary Figure 3). However, decreasing
production over time in our simulation is in good agreement with
our recent results showing a slight decrease in production from
1991 to 1994–1995.

SPM significantly depends on the climate weather conditions,
mainly air temperature and wind speed as well as the duration
of these weather conditions. Our analysis showed that the
weather conditions (wind speed and direction) 1 day or hours
before the measurement correlate to the SPM amount in the
water column. We are currently working on modeling the SMP
dynamics in Potter Cove coupled with FESOM-C (Androsov
et al., 2019), which will be used for future SDMs in Potter
Cove. This new analysis shows that meteorological conditions
on the day before the measurement strongly influence spatial
SPM concentrations in Potter Cove surface waters (Neder and
Fofonova, unpublished data).

The SPM snapshot we used in this study indicates decreasing
SPM concentration from the head toward the outer cove. On
the same transect, macroalgae maximum growth depth and the
summer production increase reciprocally and macroalgal species
composition changes (Quartino et al., 2013; Deregibus et al.,
2016; Campana et al., 2018). Increasing turbidity, meaning less
light availability may lead to an upward shift of the macroalgae
at the coastline, because they do not maintain positive carbon
balance at deeper depth under high SPM (Deregibus et al.,
2016). An upward shift of macroalgae was also found for an
Arctic fjord comparing data from the mid-90ies with 2012–2014
(Bartsch et al., 2016). Not only the decreased light availability
for the algae, but also the sediment per se may reduce the
macroalgal recruitment success by up to 100% (Zacher et al.,
2016). This may be due to processes such as sediment scour and
burial (Airoldi, 2003).

While scenarios 1 (1991) and 2 (1998) model macroalgal
coverage of 143 ha and 100 ha, Klöser et al. (1996) made their
approximation for 110 ha in 1993/94. The model describes
the past and the “tom” status of macroalgal distribution in
Potter Cove with a slight tendency of an underestimation.
The arguably crude projection of macroalgal community
distribution and inferred productivity in a future of increasing
discharge of eroded sediments for 2019 (scenario 3) and 2026
(scenario 4) highlights a general trend toward a dramatically
reduced macroalgal summer productivity inside Potter Cove
as melting of the Fourcade glacier continues. This process
is mitigated by an increased colonization and productivity
by macroalgae inside the cove in shallow hard bottom areas
formerly covered by the glacier (Quartino et al., 2013; Deregibus

Frontiers in Ecology and Evolution | www.frontiersin.org 12 June 2019 | Volume 7 | Article 207

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Jerosch et al. Potential Antarctic Macroalgal Habitat Shifts

et al., 2016; Campana et al., 2018) and hence predicts a
general increase in benthic primary production in polar
coastal areas.

This rather drastic decline of productivity presumably
represents an overestimation because modeled SPM values were
reduced/increased equally in all areas of the cove and by
assuming a linear relation between distance to the glacier and
SPM change in time. Monien et al. (2017) stated, however,
that up to 50% of the plume sediments are deposited in
glacier proximal areas (the inner cove) and do not affect all
areas equally as assumed in our model. This is also indirectly
confirmed by light measurements at different sites of the
cove, measuring higher light penetration in the outer cove
compared to the inner cove (Quartino et al., 2013; Deregibus
et al., 2016). Furthermore, the satellite image showing the
SPM plume represents a snapshot of a single day, potentially
failing to adequately represent the general situation. However,
even if changes will be less pronounced, the negative effect
of increased sedimentation on macroalgal distribution and
production is clearly visible and reproducible with our applied
data sets.

More spatial aspects that structure benthic communities in
polar areas can be added to the model such as ice scouring and
sea ice timing (Smale et al., 2008; Barnes, 2017; Deregibus et al.,
2017). Clark et al. (2013) predicted that earlier ice break-up can
shift shallow water ecosystems from invertebrate dominated to
macroalgae dominated communities, in areas with hard substrate
present. In recent years we observed higher frequency of ice-free
winters in Potter Cove (doi: 10.1594/PANGAEA.773378, Gómez
Izquierdo et al., 2009). In the outer areas of Potter Cove big
icebergs are a major disturbance factor (Klöser et al., 1996) and
iceberg incidence inside the cove has increased in recent years
(Deregibus et al., 2017). Contrary, ice disturbance in the inner
cove is produced by flow of ice blocks through the glacier front
line (Falk et al., 2016), which may diminish in the future as the
glacier front retreats further onto land. Ice scouring was signaled
as a driver of increased macroalgal patchiness in shallower shelf
areas (Clarke et al., 2007; Clark et al., 2015) and the coexistence
of early and late successional stages (Quartino et al., 2005;
Barnes, 2017). Results of ongoing experiments in Potter Cove will
provide detailed information about ice disturbance influence on
macroalgae (Deregibus et al., 2017) and as soon as transferred
into a spatial data set, they can be included in the model.

Arguably, the productivity estimates presented here are
limited to present day data availability. To get more reliable
productivity measurements, it would be very important to take
year-round data of the main biomass builders into account, as
many Antarctic macroalgae show highly seasonal growth starting
in late winter/spring (Wiencke and Clayton, 2002). However,
late winter to early spring data on algal physiology and light
climate are extremely rare and difficult to obtain for polar coasts.
For the future we recommend to conduct an appropriate spatial
habitat monitoring program for representative areas which
could serve to improve productivity estimates. For improved
biomass estimations, we need models for single macroalgal
species, since decreasing productivity can also result from

replacement of kelp by more robust but smaller macroalgae
species. Furthermore, a monitoring programme should include
biological feedback in terms of zoobenthos succession on newly
ice-free hard substrates as shown by Lagger et al. (2017)
and Campana et al. (2018).

CONCLUSIONS

There is an urgent need to quantify and model geographic
shifts of species and community distribution ranges in times
of global change (Sahade et al., 2015; Singer et al., 2016;
Urban et al., 2016). Quality assessed extrapolation of single
measurements in coastal areas and coastal structures such
as glacial coves highlights the ecologically relevance of local
analyses and supports regional and global budgeting of carbon
cycling. Correlative models can spatially simulate effects of
climate change and allow for reproduction of the results. Species
distribution models provide a statistical validation of the results
and ranking of the model-relevant environmental variables
for cause-effect assessments. Statistical models are robust and
applicable to many groups of species; however, they do not
yet consider ecosystem functions and feedback loops such
as species interactions. The combination of robust statistical
correlative models with mechanism-orientated modeling is a
promising approach for future biomass approximations in
coastal Antarctic fjord systems under climate change with the
next generation of species distribution models (Urban et al.,
2016). It remains however unclear whether the projections
resulting from such models are more reliable (Singer et al.,
2016). Here, we provide the first step for spatial-temporal
ecosystem modeling of macroalgae in the Antarctic Peninsula
region. An exceptional long-term and high-density database,
rarely available in polar coastal environments, was used for
model construction. The approach can be expanded to associated
questions, such as the distribution of macroalgal-associated
fauna, or to improve regional macroalgal distribution estimates
for systems similarly influenced by glacial erosion. Factors to
be considered would include sea ice coverage, hard substrate,
and SPM data in the areas of interest. Significant reductions of
macroalgal productivity as we are predicting for Potter Cove is
an assumption that can be tested in the upcoming decades. As
more data layers for ice scour and grazers become available, the
model can be refined.
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