28 research outputs found

    A "critical" climatic evaluation of last interglacial (MIS 5e) records from the Norwegian Sea

    Get PDF
    Sediment cores from the Norwegian Sea were studied to evaluate interglacial climate conditions of the marine isotope stage 5e (MIS 5e). Using planktic forminiferal assemblages as the core method, a detailed picture of the evolution of surface water conditions was derived. According to our age model, a step-like deglaciation of the Saalian ice sheets is noted between ca. 135 and 124.5 Kya, but the deglaciation shows little response with regard to surface ocean warming. From then on, the rapidly increasing abundance of subpolar forminifers, concomitant with decreasing iceberg indicators, provides evidence for the development of interglacial conditions sensu stricto (5e-ss), a period that lasted for about 9 Ky. As interpreted from the foraminiferal records, and supported by the other proxies, this interval of 5e-ss was in two parts: showing an early warm phase, but with a fresher, i.e., lower salinity, water mass, and a subsequent cooling phase that lasted until ca. 118.5 Kya. After this time, the climatic optimum with the most intense advection of Atlantic surface water masses occurred until ca. 116 Kya. A rapid transition with two notable climatic perturbations is observed subsequently during the glacial inception. Overall, the peak warmth of the last interglacial period occurred relatively late after deglaciation, and at no time did it reach the high warmth level of the early Holocene. This finding must be considered when using the last interglacial situation as an analogue model for enhanced meridional transfer of ocean heat to the Arctic, with the prospect of a future warmer climate

    Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale

    Searches for electroweak neutralino and chargino production in channels with Higgs, Z, and W bosons in pp collisions at 8 TeV

    Get PDF
    Searches for supersymmetry (SUSY) are presented based on the electroweak pair production of neutralinos and charginos, leading to decay channels with Higgs, Z, and W bosons and undetected lightest SUSY particles (LSPs). The data sample corresponds to an integrated luminosity of about 19.5 fb(-1) of proton-proton collisions at a center-of-mass energy of 8 TeV collected in 2012 with the CMS detector at the LHC. The main emphasis is neutralino pair production in which each neutralino decays either to a Higgs boson (h) and an LSP or to a Z boson and an LSP, leading to hh, hZ, and ZZ states with missing transverse energy (E-T(miss)). A second aspect is chargino-neutralino pair production, leading to hW states with E-T(miss). The decays of a Higgs boson to a bottom-quark pair, to a photon pair, and to final states with leptons are considered in conjunction with hadronic and leptonic decay modes of the Z and W bosons. No evidence is found for supersymmetric particles, and 95% confidence level upper limits are evaluated for the respective pair production cross sections and for neutralino and chargino mass values

    The Sample Analysis at Mars Investigation and Instrument Suite

    Full text link

    Constant Holocene Southern-Ocean 14C reservoir ages and ice-shelf flow rates

    No full text
    Southern Ocean radiocarbon reservoir ages (i.e. non-zero radiocarbon ages in seawater) are the highest in the world's surface ocean. Constraining these reservoir ages at present and in the past is important not only because unknown reservoir ages limit the interpretation of Antarctic radiocarbon chronologies, but also because reservoir ages provide information about ocean circulation (as a recorder of past circulation and as an end member for major deep-water masses in today's ocean). In this study, we use paired U/Th and 14C ages of an unusual set of solitary coral samples trapped by fringing ice shelves in the Ross Sea to provide the first detailed study of Holocene reservoir ages for the Southern Ocean. Our results indicate a relatively constant marine radiocarbon reservoir age of 1144±120 years for the past 6000 years. These results are consistent with extrapolation of the relationship between 14C and alkalinity seen elsewhere, supporting the use of this empirical relationship in high latitudes. The results also suggest constant deep-ocean circulation and air–sea exchange during the Holocene and provide a good target for tuning ocean models of modern circulation. Combining the new ages for corals with their distance from the modern-day ice-shelf grounding line provides some of the first long-term records of ice-shelf velocities for any region and indicates constant flow of the McMurdo Ice Shelf during the Holocene, at a rate similar to that observed toda

    Holocene Southern-Ocean Surface Radiocarbon Ages: Implications for Ocean Circulation and Ice-shelf Flow Rates

    No full text
    The Southern Ocean features high surface-water 14C reservoir ages, reflecting substantial upwelling of old deep water and poor air-sea exchange. These high values complicate 14C dating in the circum-Antarctic region, and encode information about past ocean circulation (particularly the rate of deep-water ventilation in the Atlantic). Here we present new results from the Ross Sea that provide a history of Holocene Southern Ocean 14C. Freezing at the base of the McMurdo ice shelf traps sediment (including solitary corals) which is then transported to the ice surface by ice ablation. Forty-five solitary corals from the McMurdo Ice Shelf and from Hells Gate have been dated precisely using U/Th and 14C techniques to provide a detailed reconstruction of surface-water reservoir ages for the past 6,000 years. With the exception of two young samples that show the impact of bomb radiocarbon, other samples indicate a constant 14C reservoir age during this period of 1300±200 years. The constancy of this value is reassuring for studies conducting chronology in the Southern Ocean, or relying on knowledge of deep-water source regions for 14C ventilation ages. It also allows constraints to be placed on changes in the flow of NADW with time, since slower flow leads to older upwelling water in the Southern Ocean. The systematic increase in age of samples with distance from Black Island also allows reconstruction of the flow rate of the McMurdo Ice Shelf. This indicates a constant flow of about 4 m/yr for the last 5000 years, with flow about three times faster before this period. These flow rates compare with short term estimates of flow in the region of about 16 m/yr suggesting that flow may have increased in recent times
    corecore