199 research outputs found

    Earth system science frontiers - an early career perspective

    Get PDF
    The exigencies of the global community toward Earth system science will increase in the future as the human population, economies, and the human footprint on the planet continue to grow. This growth, combined with intensifying urbanization, will inevitably exert increasing pressure on all ecosystem services. A unified interdisciplinary approach to Earth system science is required that can address this challenge, integrate technical demands and long-term visions, and reconcile user demands with scientific feasibility. Together with the research arms of the World Meteorological Organization, the Young Earth System Scientists community has gathered early-career scientists from around the world to initiate a discussion about frontiers of Earth system science. To provide optimal information for society, Earth system science has to provide a comprehensive understanding of the physical processes that drive the Earth system and anthropogenic influences. This understanding will be reflected in seamless prediction systems for environmental processes that are robust and instructive to local users on all scales. Such prediction systems require improved physical process understanding, more high-resolution global observations, and advanced modeling capability, as well as high-performance computing on unprecedented scales. At the same time, the robustness and usability of such prediction systems also depend on deepening our understanding of the entire Earth system and improved communication between end users and researchers. Earth system science is the fundamental baseline for understanding the Earth’s capacity to accommodate humanity, and it provides a means to have a rational discussion about the consequences and limits of anthropogenic influence on Earth. Without its progress, truly sustainable development will be impossible. © 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses)

    Association between H-RAS T81C genetic polymorphism and gastrointestinal cancer risk: A population based case-control study in China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gastrointestinal cancer, such as gastric, colon and rectal cancer, is a major medical and economic burden worldwide. However, the exact mechanism of gastrointestinal cancer development still remains unclear. <it>RAS </it>genes have been elucidated as major participants in the development and progression of a series of human tumours and the single nucleotide polymorphism at <it>H-RAS </it>cDNA position 81 was demonstrated to contribute to the risks of bladder, oral and thyroid carcinoma. Therefore, we hypothesized that this polymorphisms in <it>H-RAS </it>could influence susceptibility to gastrointestinal cancer as well, and we conducted this study to test the hypothesis in Chinese population.</p> <p>Methods</p> <p>A population based case-control study, including 296 cases with gastrointestinal cancer and 448 healthy controls selected from a Chinese population was conducted. <it>H-RAS </it>T81C polymorphism was genotyped by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) assay.</p> <p>Results</p> <p>In the healthy controls, the TT, TC and CC genotypes frequencies of <it>H-RAS </it>T81C polymorphism, were 79.24%, 19.87% and 0.89%, respectively, and the C allele frequency was 10.83%. Compared with TT genotype, the TC genotype was significantly associated with an increased risk of gastric cancer (adjusted OR = 3.67, 95%CI = 2.21–6.08), while the CC genotype showed an increased risk as well (adjusted OR = 3.29, 95%CI = 0.54–19.86), but it was not statistically significant. In contrast, the frequency of TC genotype was not significantly increased in colon cancer and rectal cancer patients. Further analysis was performed by combining TC and CC genotypes compared against TT genotype. As a result, a statistically significant risk with adjusted OR of 3.65 (95%CI, 2.22–6.00) was found in gastric cancer, while no significant association of <it>H-RAS </it>T81C polymorphism with colon cancer and rectal cancer was observed.</p> <p>Conclusion</p> <p>These findings indicate, for the first time, that there is an <it>H-RAS </it>T81C polymorphism existing in Chinese population, and this SNP might be a low penetrance gene predisposition factor for gastric cancer.</p

    Familial Resemblance for Loneliness

    Get PDF
    Social isolation and loneliness in humans have been associated with physical and psychological morbidity, as well as mortality. This study aimed to assess the etiology of individual differences in feelings of loneliness. The genetic architecture of loneliness was explored in an extended twin-family design including 8,683 twins, siblings and parents from 3,911 families. In addition, 917 spouses of twins participated. The presence of assortative mating, genetic non-additivity, vertical cultural transmission, genotype–environment (GE) correlation and interaction was modeled. GE interaction was considered for several demographic characteristics. Results showed non-random mating for loneliness. We confirmed that loneliness is moderately heritable, with a significant contribution of non-additive genetic variation. There were no effects of vertical cultural transmission. With respect to demographic characteristics, results indicated that marriage, having offspring, more years of education, and a higher number of siblings are associated with lower levels of loneliness. Interestingly, these effects tended to be stronger for men than women. There was little evidence of changes in genetic architecture as a function of these characteristics. We conclude that the genetic architecture of loneliness points to non-additive genetic influences, suggesting it may be a trait that was not neutral to selection in our evolutionary past. Sociodemographic factors that influence the prevalence of loneliness do not affect its genetic architecture

    The origins and spread of domestic horses from the Western Eurasian steppes

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: All collapsed and paired-end sequence data for samples sequenced in this study are available in compressed fastq format through the European Nucleotide Archive under accession number PRJEB44430, together with rescaled and trimmed bam sequence alignments against both the nuclear and mitochondrial horse reference genomes. Previously published ancient data used in this study are available under accession numbers PRJEB7537, PRJEB10098, PRJEB10854, PRJEB22390 and PRJEB31613, and detailed in Supplementary Table 1. The genomes of ten modern horses, publicly available, were also accessed as indicated in their corresponding original publications57,61,85-87.NOTE: see the published version available via the DOI in this record for the full list of authorsDomestication of horses fundamentally transformed long-range mobility and warfare. However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling at Botai, Central Asia around 3500 BC. Other longstanding candidate regions for horse domestication, such as Iberia and Anatolia, have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 BC, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 BC driving the spread of Indo-European languages. This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium BC Sintashta culture

    Taxonomy of the family Arenaviridae and the order Bunyavirales : update 2018

    Get PDF
    In 2018, the family Arenaviridae was expanded by inclusion of 1 new genus and 5 novel species. At the same time, the recently established order Bunyavirales was expanded by 3 species. This article presents the updated taxonomy of the family Arenaviridae and the order Bunyavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV) and summarizes additional taxonomic proposals that may affect the order in the near future.Peer reviewe
    corecore