528 research outputs found
Patterning the insect eye: from stochastic to deterministic mechanisms
While most processes in biology are highly deterministic, stochastic
mechanisms are sometimes used to increase cellular diversity, such as in the
specification of sensory receptors. In the human and Drosophila eye,
photoreceptors sensitive to various wavelengths of light are distributed
randomly across the retina. Mechanisms that underlie stochastic cell fate
specification have been analysed in detail in the Drosophila retina. In
contrast, the retinas of another group of dipteran flies exhibit highly ordered
patterns. Species in the Dolichopodidae, the "long-legged" flies, have regular
alternating columns of two types of ommatidia (unit eyes), each producing
corneal lenses of different colours. Individual flies sometimes exhibit
perturbations of this orderly pattern, with "mistakes" producing changes in
pattern that can propagate across the entire eye, suggesting that the
underlying developmental mechanisms follow local, cellular-automaton-like
rules. We hypothesize that the regulatory circuitry patterning the eye is
largely conserved among flies such that the difference between the Drosophila
and Dolichopodidae eyes should be explicable in terms of relative interaction
strengths, rather than requiring a rewiring of the regulatory network. We
present a simple stochastic model which, among its other predictions, is
capable of explaining both the random Drosophila eye and the ordered, striped
pattern of Dolichopodidae.Comment: 24 pages, 4 figure
Fab + Craft: Synthesis of Maker, Machine, Material
Within contemporary architecture a fundamental disjunction exists between design and building facilitated by the use of advanced computational methods, and the relationship between form, material, and maker. The making of buildings demands an expertise that is familiar with the physical and involves a level of skill that many designers cannot claim to fully possess or practice. This doctorate project presents a study of a design-through-making methodology that incorporates craft with the material exploration of sandwich panels, digital technology and fabrication in the process of ‘making’ architecture. A focus is placed on the development of a specific design intent through the manipulation of materials, using skills and techniques guided by the practiced hand. This interaction between technology, material, and the designer-maker referred to as “fab+craft” creates a narrative that allows for the physical translation of ideas into the built environment
Bridging the gap to mesoscale radiation materials science with transient grating spectroscopy
Direct mesoscale measurements of radiation-induced changes in the mechanical properties of bulk materials remain difficult to perform. Most widely used characterization techniques are either macro- or microscale in nature, focusing on overall properties or overly small areas for analysis. Linking the atomic structure of irradiated materials directly with their radiation-affected properties remains one of the largest unmet challenges in radiation materials science. By measuring the change in surface acoustic wave speed as a function of relative orientation on metallic single crystals, we demonstrate that transient grating (TG) spectroscopy experiments have the sensitivity necessary to detect radiation-induced material property changes. We also show that classical molecular dynamics (MD) simulations can be used to accurately simulate orientation-based changes in surface acoustic wave speed in TG experiments, by comparing with experimental measurements and theoretical predictions. The agreement between theory, simulation, and experiment gives confidence in classical MD as a predictive tool to simulate defect-based changes in elastic properties, which cannot yet be fully treated by theory. This ability is of critical importance for the informed use of TG spectroscopy to measure material property changes induced by radiation damage, which may vary by amounts formerly too small for reliable in situ detection. Finally, our MD simulation framework is used to study the effect of an imposed vacancy population on the acoustic response of several materials. The results of these studies indicate that TG experiments are well suited to the ex situ and in situ study of radiation-induced material property changes.National Science Foundation (U.S.) (Grant 1122374)National Science Foundation (U.S.) (Grant CHE-1111557)Transatomic Power (Award 023875-001)U.S. Nuclear Regulatory Commission (MIT Nuclear Education Faculty Development Program. Grant NRC-HQ- 84-15-G-0045
William Hawkins e as primeiras tentativas de comércio entre a Inglaterra e o Brasil (1530-1542); algumas idéias a propósito das narrativas de Hakluyt e a documentação da alfândega inglêsa
A pre-fusion, trimeric subunit influenza HA-based vaccine elicits cross-protection between highly divergent influenza A viruses
Despite our best efforts to vaccinate against influenza viruses they remain a major cause of morbidity and mortality worldwide, resulting in 3-5 million severe infections and more than 250,000 deaths annually. Constant antigenic changes in circulating viruses means current vaccines must be updated and re-administered annually. This approach is time-consuming and expensive, and is often hindered by mismatches between circulating and vaccine strains. Strain mismatch can contribute to insufficient vaccine efficacy, which has ranged from just 10-60% over the last decade. Furthermore, recent sporadic zoonotic outbreaks of novel highly pathogenic viruses from avian species, to which current vaccines provide no immunity, have been observed, with fatality rates around 40%. This raises serious concerns of a global pandemic with the potential to spread rapidly before a vaccine can be manufactured. Novel approaches to influenza vaccination are clearly needed in order to overcome these limitations with “universal” flu vaccines being the holy grail. We have stabilized recombinant influenza haemagglutinin (rHA) in its native, pre-fusion conformation by the addition of a novel “clamp” stabilization motif to enhance subunit vaccine potency and breadth of protection. Immunisation of mice with clamp-stabilized prefusion rHA elicited a potent neutralizing antibody response (~4-fold improvement over current vaccines). Most importantly, antibodies elicited upon immunisation with clamp-stabilised prefusion rHA showed an 80-fold increase in cross-reactivity to rHA derived from a divergent, highly pathogenic avian virus (H5N1) when compared to the current influenza vaccines. We have also shown that vaccination with clamp-stabilisted rHA based on the H3 subtype (group 2) is capable of providing cross-protection to a challenge with a highly-divergent group 1 virus (H1N1). Ultimately, this approach could represent a potential universal influenza vaccine, providing enhanced cross-protection against both group 1 and 2 seasonal influenza virus strains while simultaneously providing an increased cross-reactive humoral immune response to potential zoonotic pandemic strains.
Please click Additional Files below to see the full abstract
A new methodology for automating acoustic emission detection of metallic fatigue fractures in highly demanding aerospace environments: An overview
The acoustic emission (AE) phenomenon has many attributes that make it desirable as a structural health monitoring or non-destructive testing technique, including the capability to continuously and globally monitor large structures using a sparse sensor array and with no dependency on defect size. However, AE monitoring is yet to fulfil its true potential, due mainly to limitations in location accuracy and signal characterisation that often arise in complex structures with high levels of background noise. Furthermore, the technique has been criticised for a lack of quantitative results and the large amount of operator interpretation required during data analysis. This paper begins by introducing the challenges faced in developing an AE based structural health monitoring system and then gives a review of previous progress made in addresing these challenges. Subsequently an overview of a novel methodology for automatic detection of fatigue fractures in complex geometries and noisy environments is presented, which combines a number of signal processing techniques to address the current limitations of AE monitoring. The technique was developed for monitoring metallic landing gear components during pre-flight certification testing and results are presented from a full-scale steel landing gear component undergoing fatigue loading. Fracture onset was successfully identify automatically at 49,000 fatigue cycles prior to final failure (validated by the use of dye penetrant inspection) and the fracture position was located to within 10. mm of the actual location
Key Stakeholder Perceptions of Doula Support for Persons with Perinatal Opioid Use Disorder
Background Maternal child health disparities are prevalent among pregnant and parenting women in treatment for opioid use disorder (OUD). Doulas have been utilized as a perinatal support in other vulnerable populations to increase healthcare utilization and improve birth outcomes. While research demonstrated that doula services can be feasibly implemented for populations experiencing poverty and trauma, there are limited studies to support that this could be true for patients with OUD as well
International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database - the quality controlled standard tool for routine identification of human and animal pathogenic fungi
Human and animal fungal pathogens are a growing threat worldwide leading to emerging infections and creating new risks for established ones. There is a growing need for a rapid and accurate identification of pathogens to enable early diagnosis and targeted antifungal therapy. Morphological and biochemical identification methods are time-consuming and require trained experts. Alternatively, molecular methods, such as DNA barcoding, a powerful and easy tool for rapid monophasic identification, offer a practical approach for species identification and less demanding in terms of taxonomical expertise. However, its wide-spread use is still limited by a lack of quality-controlled reference databases and the evolving recognition and definition of new fungal species/complexes. An international consortium of medical mycology laboratories was formed aiming to establish a quality controlled ITS database under the umbrella of the ISHAM working group on "DNA barcoding of human and animal pathogenic fungi." A new database, containing 2800 ITS sequences representing 421 fungal species, providing the medical community with a freely accessible tool at http://www.isham.org and http://its.mycologylab.org/ to rapidly and reliably identify most agents of mycoses, was established. The generated sequences included in the new database were used to evaluate the variation and overall utility of the ITS region for the identification of pathogenic fungi at intra-and interspecies level. The average intraspecies variation ranged from 0 to 2.25%. This highlighted selected pathogenic fungal species, such as the dermatophytes and emerging yeast, for which additional molecular methods/genetic markers are required for their reliable identification from clinical and veterinary specimens.This study was supported by an National Health and Medical Research Council of Australia (NH&MRC) grant [#APP1031952] to W Meyer, S Chen, V Robert, and D Ellis; CNPq [350338/2000-0] and FAPERJ [E-26/103.157/2011] grants to RM Zancope-Oliveira; CNPq [308011/2010-4] and FAPESP [2007/08575-1] Fundacao de Amparo Pesquisa do Estado de So Paulo (FAPESP) grants to AL Colombo; PEst-OE/BIA/UI4050/2014 from Fundacao para a Ciencia e Tecnologia (FCT) to C Pais; the Belgian Science Policy Office (Belspo) to BCCM/IHEM; the MEXBOL program of CONACyT-Mexico, [ref. number: 1228961 to ML Taylor and [122481] to C Toriello; the Institut Pasteur and Institut de Veil le Sanitaire to F Dromer and D Garcia-Hermoso; and the grants from the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) and the Fundacao de Amparo a Pesquisa do Estado de Goias (FAPEG) to CM de Almeida Soares and JA Parente Rocha. I Arthur would like to thank G Cherian, A Higgins and the staff of the Molecular Diagnostics Laboratory, Division of Microbiology and Infectious Diseases, Path West, QEII Medial Centre. Dromer would like to thank for the technical help of the sequencing facility and specifically that of I, Diancourt, A-S Delannoy-Vieillard, J-M Thiberge (Genotyping of Pathogens and Public Health, Institut Pasteur). RM Zancope-Oliveira would like to thank the Genomic/DNA Sequencing Platform at Fundacao Oswaldo Cruz-PDTIS/FIOCRUZ [RPT01A], Brazil for the sequencing. B Robbertse and CL Schoch acknowledge support from the Intramural Research Program of the NIH, National Library of Medicine. T Sorrell's work is funded by the NH&MRC of Australia; she is a Sydney Medical School Foundation Fellow.info:eu-repo/semantics/publishedVersio
Bridging the gap to mesoscale radiation materials science with transient grating spectroscopy
- …
