179 research outputs found

    Bioturbation artifacts in zero-age sediments

    Get PDF
    Author Posting. Š American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 24 (2009): PA4212, doi:10.1029/2008PA001727.Most seafloor sediments are dated with radiocarbon, and the sediment is assumed to be zero-age (modern) when the signal of atmospheric testing of nuclear weapons is present (Fraction modern (Fm) > 1). Using a simple mass balance, we show that even with Fm > 1, half of the planktonic foraminifera at the seafloor can be centuries old, because of bioturbation. This calculation, and data from four core sites in the western North Atlantic indicate that, first, during some part of the Little Ice Age (LIA) there may have been more Antarctic Bottom Water than today in the deep western North Atlantic. Alternatively, bioturbation may have introduced much older benthic foraminifera into surface sediments. Second, paleo-based warming of Sargasso Sea surface waters since the LIA must lag the actual warming because of bioturbation of older and colder foraminifera.This work was funded in part by the Gary Comer Foundation and by NSF grant 0214144. A portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

    North Atlantic Late Miocene Stable-Isotope Stratigraphy, Biostratigraphy, and Magnetostratigraphy

    Get PDF
    Upper Miocene foraminiferal nannofossil ooze and chalk from DSDP Hole 552A in the northeast Atlantic Ocean have been closely sampled for biostratigraphic, paleomagnetic, and stable-isotopic studies. Sampling at 10-cm intervals resulted in an uppermost Miocene isotope stratigraphy with a 1000- to 3000-yr. resolution. Covariance in benthic (Planulina wuellerstorfi) and planktonic (Globigerina bulloides) foraminiferal δ^O¸ records is taken as evidence for variability in continental ice volume. Our best estimate is that glacial maxima occurred at ~ 5.0 and ~ 5.5 Ma and lasted no more than 20,000 yrs. These events probably lowered sea level by 60 m below the latest Miocene average. There is little oxygen-isotope evidence, however, for a prolonged glaciation during the last 2 m.y. of the late Miocene. High- and low-frequency variability in the δ^13C record of foraminifers is useful for correlation among North Atlantic DSDP Sites 408, 410, 522, 610, and 611, and for correlation with sites in other oceans. Similar δ^13C changes are seen in P. wuellerstorfi and G. bulloides, but the amplitude of the signal is always greater in G. bulloides. Variability in δ^13C common to both species probably reflects variability in the δ^13C of total CO2 in seawater. Major long-term features in the δ^13C record include a latest Miocene maximum (P. wuellerstorfi = 1.5‰) in paleomagnetic Chron 7, an abrupt decrease in δ^13C at -6.2 Ma, and a slight increase at -5.5 Ma. The decrease in δ^13C at -6.2 Ma, which has been paleomagnetically dated only twice before, occurs in the upper reversed part of Chronozone 6 at Holes 552A and 611C, in excellent agreement with earlier studies. Cycles in δ^13C with a period of ~ 104 yrs. are interpreted as changes in seawater chemistry, which may have resulted from orbitally induced variability in continental biomass. Samples of P. wuellerstorfi younger than 6 Ma from throughout the North Atlantic have δ^13C near 1‰, on average ~ 1‰ greater than samples of the same age in the Pacific Ocean. Thus, there is no evidence for cessation of North Atlantic Deep Water production resulting from the Messinian "salinity crisis." Biostratigraphic results indicate continuous sedimentation during the late Miocene after about -6.5 Ma at Hole 552A. Nannofossil biostratigraphy is complicated by the scarcity of low-latitude marker species, but middle and late Miocene Zones NN7 through NN11 are recognized. A hiatus is present at -6.5 Ma, on the basis of simultaneous first occurrences of Amaurolithusprimus, Amaurolithus delicatus, Amaurolithus amplificus, and Scyphosphaera globulata. The frequency and duration of older hiatuses increase downsection in Hole 552A, as suggested by calcareous nannofossil biostratigraphy and magnetostratigraphy. Paleomagnetic results at Hole 552A indicate a systematic pattern of inclination changes. Chronozone 6 was readily identified because of its characteristic nannoflora (sequential occurrences of species assigned to the genus Amaurolithus) and the δ^13C decrease in foraminifers, but its lower reversed interval is condensed. Only the lower normal interval of Chronozone 5 was recognized at Hole 552A; the upper normal interval and the lowest Gilbert sediment are not recognized, owing to low intensity of magnetization and to coring disturbance. Interpreting magnetic reversals below Chronozone 6 was difficult because of hiatuses, but a lower normally magnetized interval is probably Chronozone 7. Correlation between DSDP Hole 552A and other North Atlantic sites is demonstrated using coiling direction changes in the planktonic foraminifer Neogloboquadrina. At most sites this genus changed its coiling preference from dominantly right to dominantly left during the late Miocene. At Hole 552A this event probably occurred about 7 m.y. ago. At the same time, P. wuellerstorfi had maximum δ^13C values. A similar δ^13C maximum and coiling change occurred together in Chron 7 at Hole 611C, and at Hole 610E. In sediment younger than -5.5 Ma, the coiling of small Neogloboquadrina species is random, but the larger species N. atlantica retains preferential left coiling

    Regional climate variability in the western subtropical North Atlantic during the past two millennia

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 26 (2011): PA2206, doi:10.1029/2010PA002038.Western subtropical North Atlantic oceanic and atmospheric circulations connect tropical and subpolar climates. Variations in these circulations can generate regional climate anomalies that are not reflected in Northern Hemisphere averages. Assessing the significance of anthropogenic climate change at regional scales requires proxy records that allow recent trends to be interpreted in the context of long-term regional variability. We present reconstructions of Gulf Stream sea surface temperature (SST) and hydrographic variability during the past two millennia based on the magnesium/calcium ratio and oxygen isotopic composition of planktic foraminifera preserved in two western subtropical North Atlantic sediment cores. Reconstructed SST suggests low-frequency variability of ∼1°C during an interval that includes the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). A warm interval near 1250 A.D. is distinct from regional and hemispheric temperature, possibly reflecting regional variations in ocean-atmosphere heat flux associated with changes in atmospheric circulation (e.g., the North Atlantic Oscillation) or the Atlantic Meridional Overturning Circulation. Seawater δ 18O, which is marked by a fresher MCA and a more saline LIA, covaries with meridional migrations of the Atlantic Intertropical Convergence Zone. The northward advection of tropical salinity anomalies by mean surface currents provides a plausible mechanism linking Carolina Slope and tropical Atlantic hydrology.This study was supported by the Woods Hole Oceanographic Institution’s Ocean and Climate Change Institute (OCCI) and by the National Science Foundation

    North Atlantic ocean circulation and abrupt climate change during the last glaciation

    Get PDF
    The most recent ice age was characterized by rapid and hemispherically asynchronous climate oscillations, whose origin remains unresolved. Variations in oceanic meridional heat transport may contribute to these repeated climate changes, which were most pronounced during marine isotope stage 3, the glacial interval 25 thousand to 60 thousand years ago. We examined climate and ocean circulation proxies throughout this interval at high resolution in a deep North Atlantic sediment core, combining the kinematic tracer protactinium/thorium (Pa/Th) with the deep water-mass tracer, epibenthic δ13C. These indicators suggest reduced Atlantic overturning circulation during every cool northern stadial, with the greatest reductions during episodic Hudson Strait iceberg discharges, while sharp northern warming followed reinvigorated overturning. These results provide direct evidence for the ocean’s persistent, central role in abrupt glacial climate change

    Persistent suborbital climate variability in marine isotope stage 5 and termination II

    Get PDF
    New surface water records from two high sedimentation rate sites, located in the western subtropical North Atlantic near the axis of the Gulf Stream, provide clear evidence of suborbital climate variations through marine isotope stage (MIS) 5 persisting even into the warm peak of the interglaciation (substage 5e). We found that the amplitude of suborbital climate oscillations did not vary significantly for the whole of MIS 5, implying that ice volume has little or no influence on the amplitude of suborbital climate variability in this region. Although some records suggest that longer suborbital variations (4–10 kyr) during MIS 5 are linked to deepwater changes, none of the existing records is of sufficient resolution to assess if a linkage occurred for oscillations shorter than 4 kyr. However, when examined in conjunction with published data from the Norwegian Sea, new evidence from the subpolar North Atlantic suggests that coupled surface-deepwater oscillations occurred during the penultimate deglaciation. This supports the hypothesis that during glacial and deglacial times, ocean-ice interactions and deepwater variability amplify suborbital climate change at higher latitudes. We suggest that during the penultimate deglaciation the North Atlantic deepwater source varied between Nordic Sea and open North Atlantic locations, in parallel with surface temperature oscillations

    The 8200 year B.P. event in the slope water system, western subpolar North Atlantic

    Get PDF
    Author Posting. Š American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 20 (2005): PA2003, doi:10.1029/2004PA001074.Stable isotope, trace metal, alkenone paleothermometry, and radiocarbon methods have been applied to sediment cores in the western subpolar North Atlantic between Hudson Strait and Cape Hatteras to reveal the history of climate in that region over the past ∟11 kyr. We focus on cores from the Laurentian Fan, which is known to have rapid and continuous accumulation of hemipelagic sediment. Although results among our various proxy data are not always in agreement, the weight of the evidence (alkenone sea surface temperature (SST), δ18O and abundance of Globigerinoides ruber) indicates a continual cooling of surface waters over Laurentian Fan, from about 18°C in the early Holocene to about 8°C today. Alternatively, Mg/Ca data on planktonic foraminifera indicate no systematic change in Holocene SST. The inferred long-term decrease in SST was probably driven by decreasing seasonality of Northern Hemisphere insolation. Two series of proxy data show the gradual cooling was interrupted by a two-step cold pulse that began 8500 years ago, and lasted about 700 years. Although this event is associated with the final deglaciation of Hudson Bay, there is no δ18O minimum anywhere in the Labrador Sea, yet there is some evidence for it as far south as Cape Hatteras. Finally, although the 8200 year B.P. event has been implicated in decreasing North Atlantic ventilation, and hence widespread temperature depression on land and at sea, we find inconsistent evidence for a change at that time in deep ocean nutrient content at ∟4 km water depth.Funding for JPS was from the NOAA Climate and Global Change Program (NA 16GP2679), NSF-Earth System History (0116940), the Jeptha H. and Emily V. Wade Award for Research, and a Henry L. and Grace Doherty Professorship. LDK and YR were funded by NSF grant OCE-0117149

    Evidence from diatom-bound nitrogen isotopes for subarctic Pacific stratification during the last ice age and a link to North Pacific denitrification changes

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 22 (2007): PA1215, doi:10.1029/2005PA001205.In a piston core from the central Bering Sea, diatom microfossil-bound N isotopes and the concentrations of opal, biogenic barium, calcium carbonate, and organic N are measured over the last glacial/interglacial cycle. Compared to the interglacial sections of the core, the sediments of the last ice age are characterized by 3‰ higher diatom-bound δ 15N, 70 wt % lower opal content and 1200 ppm lower biogenic barium. Taken together and with constraints on sediment accumulation rate, these results suggest a reduced supply of nitrate to the surface due to stronger stratification of the upper water column of the Bering Sea during glacial times, with more complete nitrate consumption resulting from continued iron supply through atmospheric deposition. This finding extends the body of evidence for a pervasive link between cold climates and polar ocean stratification. In addition, we hypothesize that more complete nutrient consumption in the glacial age subarctic Pacific contributed to the previously observed ice age reduction in suboxia and denitrification in the eastern tropical North Pacific by lowering the nutrient content of the intermediate-depth water formed in the subpolar North Pacific. In the deglacial interval of the Bering Sea record, two apparent peaks in export productivity are associated with maxima in diatom-bound and bulk sediment δ 15N. The high δ 15N in these intervals may have resulted from greater surface nutrient consumption during this period. However, the synchroneity of the deglacial peaks in the Bering Sea with similar bulk sediment δ 15N changes in the eastern Pacific margin and the presence of sediment lamination within the Bering Sea during the deposition of the productivity peaks raise the possibility that both regional and local denitrification worked to raise the δ 15N of the nitrate feeding Bering Sea surface waters at these times.Financial support for this work was provided by NSF grants OCE-0136449, OCE-9981479, ANT-0453680, by BP and Ford Motor Company through the Princeton Carbon Migration Initiative, and by a NDSEG fellowship to B.G.B. Work conducted aboard the USCG Healy (Healy 0202) was funded by grant OPP-9912122

    Southwest Atlantic water mass evolution during the last deglaciation

    Full text link
    The rise in atmospheric CO2 during Heinrich Stadial 1 (HS1; 14.5–17.5 kyr B.P.) may have been driven by the release of carbon from the abyssal ocean. Model simulations suggest that wind‐driven upwelling in the Southern Ocean can liberate 13C‐depleted carbon from the abyss, causing atmospheric CO2 to increase and the δ13C of CO2 to decrease. One prediction of the Southern Ocean hypothesis is that water mass tracers in the deep South Atlantic should register a circulation response early in the deglaciation. Here we test this idea using a depth transect of 12 cores from the Brazil Margin. We show that records below 2300 m remained 13C‐depleted until 15 kyr B.P. or later, indicating that the abyssal South Atlantic was an unlikely source of light carbon to the atmosphere during HS1. Benthic δ18O results are consistent with abyssal South Atlantic isolation until 15 kyr B.P., in contrast to shallower sites. The depth dependent timing of the δ18O signal suggests that correcting δ18O for ice volume is problematic on glacial terminations. New data from 2700 to 3000 m show that the deep SW Atlantic was isotopically distinct from the abyss during HS1. As a result, we find that mid‐depth δ13C minima were most likely driven by an abrupt drop in δ13C of northern component water. Low δ13C at the Brazil Margin also coincided with an ~80‰ decrease in Δ14C. Our results are consistent with a weakening of the Atlantic meridional overturning circulation and point toward a northern hemisphere trigger for the initial rise in atmospheric CO2 during HS1.Key PointsDeep SW Atlantic was unlikely source of light carbon to atmosphere during HS1Mid‐depth isotopic anomalies due to change in northern component waterNorthern component water had robust influence in South Atlantic during HS1Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111970/1/palo20190.pd
    • …
    corecore