278 research outputs found

    Global population divergence and admixture of the brown rat (Rattus norvegicus)

    Get PDF
    Native to China and Mongolia, the brown rat (Rattus norvegicus) now enjoys a worldwide distribution. While black rats and the house mouse tracked the regional development of human agricultural settlements, brown rats did not appear in Europe until the 1500s, suggesting their range expansion was a response to relatively recent increases in global trade. We inferred the global phylogeography of brown rats using 32 k SNPs, and detected 13 evolutionary clusters within five expansion routes. One cluster arose following a southward expansion into Southeast Asia. Three additional clusters arose from two independent eastward expansions: one expansion from Russia to the Aleutian Archipelago, and a second to western North America. Westward expansion resulted in the colonization of Europe from which subsequent rapid colonization of Africa, the Americas and Australasia occurred, and multiple evolutionary clusters were detected. An astonishing degree of fine-grained clustering between and within sampling sites underscored the extent to which urban heterogeneity shaped genetic structure of commensal rodents. Surprisingly, few individuals were recent migrants, suggesting that recruitment into established populations is limited. Understanding the global population structure of R. norvegicus offers novel perspectives on the forces driving the spread of zoonotic disease, and aids in development of rat eradication programmes

    Sexual selection protects against extinction

    Get PDF
    Reproduction through sex carries substantial costs, mainly because only half of sexual adults produce offspring. It has been theorised that these costs could be countered if sex allows sexual selection to clear the universal fitness constraint of mutation load. Under sexual selection, competition between (usually) males, and mate choice by (usually) females create important intraspecific filters for reproductive success, so that only a subset of males gains paternity. If reproductive success under sexual selection is dependent on individual condition, which depends on mutation load, then sexually selected filtering through ‘genic capture’ could offset the costs of sex because it provides genetic benefits to populations. Here, we test this theory experimentally by comparing whether populations with histories of strong versus weak sexual selection purge mutation load and resist extinction differently. After evolving replicate populations of the flour beetle Tribolium castaneum for ~7 years under conditions that differed solely in the strengths of sexual selection, we revealed mutation load using inbreeding. Lineages from populations that had previously experienced strong sexual selection were resilient to extinction and maintained fitness under inbreeding, with some families continuing to survive after 20 generations of sib × sib mating. By contrast, lineages derived from populations that experienced weak or non-existent sexual selection showed rapid fitness declines under inbreeding, and all were extinct after generation 10. Multiple mutations across the genome with individually small effects can be difficult to clear, yet sum to a significant fitness load; our findings reveal that sexual selection reduces this load, improving population viability in the face of genetic stress

    Virus Replication as a Phenotypic Version of Polynucleotide Evolution

    Full text link
    In this paper we revisit and adapt to viral evolution an approach based on the theory of branching process advanced by Demetrius, Schuster and Sigmund ("Polynucleotide evolution and branching processes", Bull. Math. Biol. 46 (1985) 239-262), in their study of polynucleotide evolution. By taking into account beneficial effects we obtain a non-trivial multivariate generalization of their single-type branching process model. Perturbative techniques allows us to obtain analytical asymptotic expressions for the main global parameters of the model which lead to the following rigorous results: (i) a new criterion for "no sure extinction", (ii) a generalization and proof, for this particular class of models, of the lethal mutagenesis criterion proposed by Bull, Sanju\'an and Wilke ("Theory of lethal mutagenesis for viruses", J. Virology 18 (2007) 2930-2939), (iii) a new proposal for the notion of relaxation time with a quantitative prescription for its evaluation, (iv) the quantitative description of the evolution of the expected values in in four distinct "stages": extinction threshold, lethal mutagenesis, stationary "equilibrium" and transient. Finally, based on these quantitative results we are able to draw some qualitative conclusions.Comment: 23 pages, 1 figure, 2 tables. arXiv admin note: substantial text overlap with arXiv:1110.336

    Critical mutation rate has an exponential dependence on population size for eukaryotic-length genomes with crossover

    Get PDF
    The critical mutation rate (CMR) determines the shift between survival-of-the-fittest and survival of individuals with greater mutational robustness (“flattest”). We identify an inverse relationship between CMR and sequence length in an in silico system with a two-peak fitness landscape; CMR decreases to no more than five orders of magnitude above estimates of eukaryotic per base mutation rate. We confirm the CMR reduces exponentially at low population sizes, irrespective of peak radius and distance, and increases with the number of genetic crossovers. We also identify an inverse relationship between CMR and the number of genes, confirming that, for a similar number of genes to that for the plant Arabidopsis thaliana (25,000), the CMR is close to its known wild-type mutation rate; mutation rates for additional organisms were also found to be within one order of magnitude of the CMR. This is the first time such a simulation model has been assigned input and produced output within range for a given biological organism. The decrease in CMR with population size previously observed is maintained; there is potential for the model to influence understanding of populations undergoing bottleneck, stress, and conservation strategy for populations near extinction

    Alignment and Prediction of cis-Regulatory Modules Based on a Probabilistic Model of Evolution

    Get PDF
    Cross-species comparison has emerged as a powerful paradigm for predicting cis-regulatory modules (CRMs) and understanding their evolution. The comparison requires reliable sequence alignment, which remains a challenging task for less conserved noncoding sequences. Furthermore, the existing models of DNA sequence evolution generally do not explicitly treat the special properties of CRM sequences. To address these limitations, we propose a model of CRM evolution that captures different modes of evolution of functional transcription factor binding sites (TFBSs) and the background sequences. A particularly novel aspect of our work is a probabilistic model of gains and losses of TFBSs, a process being recognized as an important part of regulatory sequence evolution. We present a computational framework that uses this model to solve the problems of CRM alignment and prediction. Our alignment method is similar to existing methods of statistical alignment but uses the conserved binding sites to improve alignment. Our CRM prediction method deals with the inherent uncertainties of binding site annotations and sequence alignment in a probabilistic framework. In simulated as well as real data, we demonstrate that our program is able to improve both alignment and prediction of CRM sequences over several state-of-the-art methods. Finally, we used alignments produced by our program to study binding site conservation in genome-wide binding data of key transcription factors in the Drosophila blastoderm, with two intriguing results: (i) the factor-bound sequences are under strong evolutionary constraints even if their neighboring genes are not expressed in the blastoderm and (ii) binding sites in distal bound sequences (relative to transcription start sites) tend to be more conserved than those in proximal regions. Our approach is implemented as software, EMMA (Evolutionary Model-based cis-regulatory Module Analysis), ready to be applied in a broad biological context

    Optimal Strategy for Competence Differentiation in Bacteria

    Get PDF
    A phylogenetically diverse subset of bacterial species are naturally competent for transformation by DNA. Transformation entails recombination of genes between different lineages, representing a form of bacterial sex that increases standing genetic variation. We first assess whether homologous recombination by transformation is favored by evolution. Using stochastic population genetic computer simulations in which beneficial and deleterious mutations occur at many loci throughout the whole genome, we find that transformation can increase both the rate of adaptive evolution and the equilibrium level of fitness. Secondly, motivated by experimental observations of Bacillus subtilis, we assume that competence additionally entails a weak persister phenotype, i.e., the rates of birth and death are reduced for these cells. Consequently, persisters evolve more slowly than non-persisters. We show via simulation that strains which stochastically switch into and out of the competent phenotype are evolutionarily favored over strains that express only a single phenotype. Our model's simplicity enables us to derive and numerically solve a system of finite- deterministic equations that describe the evolutionary dynamics. The observed tradeoff between the benefit of recombination and the cost of persistence may explain the previously mysterious observation that only a fractional subpopulation of B. subtilis cells express competence. More generally, this work demonstrates that population genetic forces can give rise to phenotypic diversity even in an unchanging and homogeneous environment

    Performance related factors are the main determinants of the von Willebrand factor response to exhaustive physical exercise

    Get PDF
    Background: Physical stress triggers the endothelium to release von Willebrand Factor (VWF) from the Weibel Palade bodies. Since VWF is a risk factor for arterial thrombosis, it is of great interest to discover determinants of VWF response to physical stress. We aimed to determine the main mediators of the VWF increase by exhaustive physical exercise. Methods: 105 healthy individuals (18-35 years) were included in this study. Each participant performed an incremental exhaustive exercise test on a cycle ergometer. Respiratory gas exchange measurements were obtained while cardiac function was continuously monitored. Blood was collected at baseline and directly after exhaustion. VWF antigen (VWF:Ag) levels, VWF collagen binding (VWF:CB) levels, ADAMTS13 activity and common variations in Syntaxin Binding Protein-5 (STXBP5, rs1039084 and rs9399599), Syntaxin-2 (STX2, rs7978987) and VWF (promoter, rs7965413) were determined. Results: The median VWF:Ag level at baseline was 0.94 IU/mL [IQR 0.8-1.1] and increased with 47% [IQR 25-73] after exhaustive exercise to a median maximum VWF:Ag of 1.38 IU/mL [IQR 1.1-1.8] (p<0.0001). VWF:CB levels and ADAMTS13 activity both also increased after exhaustive exercise (median increase 43% and 12%, both p<0.0001). The strongest determinants of the VWF:Ag level increase are performance related (p<0.0001). We observed a gender difference in VWF:Ag response to exercise (females 1.2 IU/mL; males 1.7 IU/mL, p = 0.001), which was associated by a difference in performance. Genetic variations in STXBP5, STX2 and the VWF promoter were not associated with VWF:Ag levels at baseline nor with the VWF:Ag increase. Conclusions: VWF:Ag levels strongly increase upon exhaustive exercise and this increase is strongly determined by physical fitness level and the intensity of the exercise, while there is no clear effect of genetic variation in STXBP5, STX2 and the VWF promoter

    Elevated white cell count in acute coronary syndromes: relationship to variants in inflammatory and thrombotic genes

    Get PDF
    BACKGROUND: Elevated white blood cell counts (WBC) in acute coronary syndromes (ACS) increase the risk of recurrent events, but it is not known if this is exacerbated by pro-inflammatory factors. We sought to identify whether pro-inflammatory genetic variants contributed to alterations in WBC and C-reactive protein (CRP) in an ACS population. METHODS: WBC and genotype of interleukin 6 (IL-6 G-174C) and of interleukin-1 receptor antagonist (IL1RN intronic repeat polymorphism) were investigated in 732 Caucasian patients with ACS in the OPUS-TIMI-16 trial. Samples for measurement of WBC and inflammatory factors were taken at baseline, i.e. Within 72 hours of an acute myocardial infarction or an unstable angina event. RESULTS: An increased white blood cell count (WBC) was associated with an increased C-reactive protein (r = 0.23, p < 0.001) and there was also a positive correlation between levels of β-fibrinogen and C-reactive protein (r = 0.42, p < 0.0001). IL1RN and IL6 genotypes had no significant impact upon WBC. The difference in median WBC between the two homozygote IL6 genotypes was 0.21/mm(3 )(95% CI = -0.41, 0.77), and -0.03/mm(3 )(95% CI = -0.55, 0.86) for IL1RN. Moreover, the composite endpoint was not significantly affected by an interaction between WBC and the IL1 (p = 0.61) or IL6 (p = 0.48) genotype. CONCLUSIONS: Cytokine pro-inflammatory genetic variants do not influence the increased inflammatory profile of ACS patients
    corecore