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ABSTRACT 47 

Once restricted to northern China and Mongolia, the brown rat (Rattus norvegicus) now enjoys a 48 

worldwide distribution due to the evolution of commensalism with humans. In contrast to black 49 

rats and the house mouse, which have tracked the regional and global development of human 50 

agricultural settlements, brown rats do not appear in the European historical record until the 51 

1500s, suggesting their range expansion was a response to relatively recent increases in global 52 

trade and modern sea-faring. We inferred the global phylogeography of brown rats using 32k 53 

SNPs to reconstruct invasion routes from estimates of population divergence and admixture. 54 

Globally, we detected 13 evolutionary clusters within five expansion routes. One cluster arose 55 

following a southward expansion into Southeast Asia. Three additional clusters arose from two 56 

independent eastward expansions: one expansion from Russia to the Aleutian Archipelago, and a 57 

second to western North America. Rapid westward expansion resulted in the colonization of 58 

Europe from which subsequent colonization of Africa, the Americas, and Australasia occurred, 59 

and multiple evolutionary clusters were detected. An astonishing degree of fine-grained 60 

clustering found both between and within our sampling sites underscored the extent to which 61 

urban heterogeneity can shape the genetic structure of commensal rodents. Surprisingly, few 62 

individuals were recent migrants despite continual global transport, suggesting that recruitment 63 

into established populations is limited. Understanding the global population structure of R. 64 

norvegicus offers novel perspectives on the forces driving the spread of zoonotic disease, and 65 

yields greater capacity to develop targeted rat eradication programs. 66 

 67 

  68 
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INTRODUCTION 69 

The development of agriculture and resultant transition from nomadic to sedentary human 70 

societies created new ecological niches for species to evolve commensal or parasitic 71 

relationships with humans (Jones, et al. 2013). The phylogeographic history of species living in 72 

close association with people often mirrors global patterns of human exploration (Searle, et al. 73 

2009; Gabriel, et al. 2015) and colonization (Matisoo-Smith and Robins 2004; Cucchi, et al. 74 

2005; Suzuki, et al. 2013; Hulme-Beaman, et al. In Press). In particular, commensal rodent 75 

distributions have been strongly influenced by the movement of humans around the world. Three 76 

rodent species, the house mouse (Mus musculus), black rat (Rattus rattus), and brown rat (R. 77 

norvegicus) are the most populous and successful invasive mammals, having colonized most of 78 

the global habitats occupied by humans (Long 2003). The least is known about genomic 79 

diversity and patterns of colonization in brown rats, including whether a history of 80 

commensalism resulted in population divergence, and if so at what spatial scales. Our lack of 81 

knowledge of the ecology and evolution of the brown rat is striking given that brown rats are 82 

responsible for an estimated $19 billion of damage annually (Pimentel, et al. 2000). 83 

Understanding the evolutionary trajectories of brown rats is also a prerequisite to elucidating the 84 

processes that resulted in a successful global invasion, including adaptations to a variety of 85 

climates and anthropogenic stressors. 86 

 87 

We inferred global routes of brown rat expansion, population differentiation, and admixture 88 

using a dense, genome-wide nuclear dataset, a first for a commensal rodent (Lack, et al. 2012). A 89 

previous mitochondrial study identified the center of origin (Song, et al. 2014) but did not 90 

resolve relationships among invasive populations. That work, in combination with fossil 91 

distributions (Smith and Xie 2008), suggested that brown rats originated in the colder climates of 92 

northern China and Mongolia before expanding across central and western Asia, possibly 93 

through human settlements associated with Silk Road trade routes. Based on historical records, 94 

brown rats became established in Europe by the 1500s and were introduced to North America by 95 

the 1750s (Armitage 1993). Brown rats now occupy nearly every major landmass (outside of 96 

polar regions), and human-assisted colonization of islands remains a constant threat to insular 97 

fauna (Harper and Bunbury 2015).  98 

 99 
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Commensalism has given rise to complex demographic and evolutionary scenarios in globally 100 

distributed rodents. Although archaeological evidence indicates that commensalism arose long 101 

after the emergence of sub-specific lineages in the house mouse in its native range of western 102 

Asia (Prager, et al. 1998; Suzuki, et al. 2013), the geographic distribution of M. m. domesticus 103 

mitochondrial haplotypes reflects transport by humans (Jones, et al. 2010; Suzuki, et al. 2013). 104 

M. m. domesticus occurred in human settlements along the eastern Mediterranean Basin around 105 

14 kya and rapidly colonized the western Mediterranean and central Europe approximately 3 kya 106 

(Cucchi, et al. 2005). Both M. m. musculus and M. m. castaneus also exhibit regional 107 

diversification of mitochondrial lineages due to natural range expansion and spread by human 108 

transport (Suzuki, et al. 2013). Human mediated movement has also been implicated in the 109 

creation of hybrid zones between subspecies in Scandinavia, China, and New Zealand (Jones, et 110 

al. 2010; Jing, et al. 2014; King 2016). Similarly, geographically isolated lineages formed prior 111 

to commensalism in the black rat species complex (Aplin, et al. 2011). The spread of agriculture 112 

and subsequent trade spurred regional and global range expansion of black rats. Genetic evidence 113 

indicates that the global distribution of R. rattus Lineage I began with an expansion from the 114 

Indian subcontinent into western Asia, followed by separate expansions into Europe and Africa 115 

(Tollenaere, et al. 2010; Aplin, et al. 2011). The presence of derived haplotypes also indicates 116 

that R. rattus Lineage I colonized the Americas, Oceania, and Africa from Europe (Aplin, et al. 117 

2011; Bastos, et al. 2011).  118 

 119 

Elucidating global brown rat phylogeographic patterns has several important implications. First, 120 

the spread of brown rats may illuminate patterns of human connectivity via trade, or unexpected 121 

movement patterns as observed in other commensal rodents (Searle, et al. 2009). Second, rats are 122 

hosts to many zoonotic diseases (e.g., Leptospira interrogans, Seoul hantavirus, etc.); 123 

understanding the distribution of genomic backgrounds may provide insight into differential 124 

disease susceptibilities. Additionally, an understanding of contemporary population structure in 125 

rats may elucidate source and sink areas for disease transmission. Third, brown rat eradication 126 

programs occur in urban areas to decrease disease transmission and on islands where rats prey 127 

upon native fauna. A comprehensive understanding of global population structure will allow for 128 

better design of eradication efforts, particularly for understanding how to limit new invasions. 129 

Thus, our aim was to test biological hypotheses developed from an understanding of the 130 

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/065458doi: bioRxiv preprint first posted online Jul. 23, 2016; 

http://dx.doi.org/10.1101/065458
http://creativecommons.org/licenses/by-nc-nd/4.0/


historical narrative of spread using phylogeographic inference. We estimated the number of 131 

distinct clusters around the world, the genomic contribution of these clusters within invaded 132 

areas, and whether genetic drift and/or post-colonization admixture elicits evolutionary 133 

divergence from source populations. 134 

 135 

RESULTS and DISCUSSION 136 

Evolutionary Clustering 137 

Nuclear Genome- Our analyses of 314 rats using 32,127 single nucleotide polymorphisms 138 

(SNPs) from ddRAD-Seq identified multiple hierarchical levels of evolutionary clustering (K). 139 

Principal component analysis (PCA) distinguished two clusters along the first principal 140 

component (PC), an Asian cluster that extended to western North America, and a non-Asian 141 

cluster found in Europe, Africa, the Americas, and New Zealand (Fig. 1). Higher dimension PCA 142 

axes distinguished subclusters (Fig. S2), then individual sampling sites; in total 58 axes of 143 

variation were significant using Tracy-Widom statistics (20 and 37 axes were significant for 144 

PCAs with only Asian or non-Asian samples respectively). Using the model-based clustering 145 

program ADMIXTURE, the Asian and non-Asian clusters divided into five and eight 146 

subclusters, respectively (Fig. 2, 3, S3-S5). Higher numbers of clusters (K=18, 20, and 26) were 147 

also supported by ADMIXTURE (Fig. S3A, S4), distinguishing ever finer spatial scales (from 148 

subcontinents to cities).  149 

 150 

The subclusters in the Asian cluster reflect underlying geography and hierarchical differentiation 151 

(Fig. S3B). The predominant four clusters reflected differentiation between: China, Southeast 152 

(SE) Asia, the Aleutian Archipelago, and Western North America (Fig. S6, S7). Within the SE 153 

Asia cluster, further subdivision was observed for the Philippines and Thailand (Fig. 2, S7). 154 

Within the Aleutian Archipelago cluster, samples from the city of Sitka (in the Alexander 155 

Archipelago) formed a subcluster. Rats from the Russian city of Sakhalinskaya Oblast and four 156 

rats aboard the Bangun Perkasa ship each formed a subcluster (Fig. S7). The Bangun Perkasa 157 

was a nationless vessel seized in the Pacific Ocean by the US government in 2012 for illegal 158 

fishing. Our analyses identified that the rats aboard were of SE Asian origin and likely 159 

represented a city in that region, probably one bordering the South China Sea, at which the ship 160 

originated or docked.  161 
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 162 

We detected greater hierarchical differentiation in the non-Asian cluster (Fig. S3C). At K=3 we 163 

observed divergence between the Western Europe (W Euro) and Northern Europe (N Euro) 164 

clusters (Fig. S9). The W Euro cluster contained rats from Europe (Great Britain, France, 165 

Austria, and Hungary), Central and South America (Argentina, Brazil, Chile, Galapagos Islands, 166 

Honduras, Guatemala, Panama), the Caribbean (Barbados, Saint Lucia), North America (eastern, 167 

central, and western USA), New Zealand, and Africa (Senegal and Mali); and the N Euro cluster 168 

included Norway, Sweden, Finland, Germany, and the Netherlands (Fig. 2, S4, S8, S9). Within 169 

these broad geographic regions, many subclusters were identified by ADMIXTURE that likely 170 

resulted from either intense founder effects, isolation resulting in genetic drift, the inclusion of 171 

second and third order relatives in the dataset, or a combination of these factors.  In the global 172 

analysis, four clusters were nested within W Euro (the island of Haida Gwaii, Canada; 173 

Vancouver, Canada; Kano, Nigeria; and Sonoma County in the western USA) and two within N 174 

Euro (Bergen, Norway; Malmo, Sweden). We identified additional well-supported subclusters 175 

within the non-Asian cluster at K=12, 15, and 17 that represented individual cities (Fig. S9). 176 

 177 

Our analysis using FINESTRUCTURE identified 101 clusters (Fig. 3). Of the 39 cities where 178 

more than one individual was sampled, 19 cities supported multiple clusters indicating genetic 179 

differentiation within cities. As GPS coordinates were not collected, we cannot hypothesize if 180 

these clusters represent distinct populations or were artefacts of sampling relatives, despite 181 

removal of individuals with relatedness coefficients greater than 0.20, although the 182 

FINESTRUCTURE algorithm should be robust to relatedness when identifying clusters. The 183 

Asian and N Euro sampling sites individually had higher coancestry coefficients between 184 

locations (Fig. 3) which supported the hierarchical clustering observed using ADMIXTURE. 185 

 186 

Mitochondrial Genome- We identified 10 clades within a network-based analysis of 103 187 

mitochondrial haplotypes (Fig. 4, Tables S5, S6). Many of the clades had spatial structure 188 

concordant with the nuclear genome results (Fig. 2A). We observed clade 1 in China, Russia, 189 

and western North America. Additionally, clades 6 and 9 contained a single haplotype only 190 

observed in China. We interpret the diversity of clades within northern China as representative of 191 

geographic structure in the ancestral range prior to movement of rats by humans (Fig. 4, Table 192 

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/065458doi: bioRxiv preprint first posted online Jul. 23, 2016; 

http://dx.doi.org/10.1101/065458
http://creativecommons.org/licenses/by-nc-nd/4.0/


S6). In SE Asia we observed clades 2 (aboard the Bangun Perkasa), 3 (Philippines), and 5 193 

(Cambodia, Thailand, and Vietnam). Clade 4 was found in western North America. European 194 

samples comprised three divergent clades (3, 8, and 10). Clade 8 was observed across Europe, 195 

western North America, and South America; this clade shared ancestry with clade 7 which was 196 

observed in Russia and Thailand (Fig. 4).  197 

 198 

Range Expansion 199 

We thinned our dataset to the sampling site with the largest sample size within each of the 13 200 

clusters supported by ADMIXTURE and analyzed the data using TREEMIX (Fig. S10). We 201 

observed divergence within Asia first, followed by the two independent expansions into western 202 

North America. Drift along the backbone of the non-Asian cluster was limited, indicating rapid 203 

expansion of rats into Africa, Europe, and the Americas (Fig. S10). Both the population tree 204 

topology and PCA (Figs. 1, S2, S10) indicated that range expansion occurred in three directions, 205 

where one southward and two eastward expansions comprised Asian ancestry, and the westward 206 

expansion produced the non-Asian cluster.  207 

 208 

Ancestral Range- In eastern China, the nuclear genome assigned strongly to a single cluster 209 

while mitochondrial diversity encompassed two divergent clades, where samples from western 210 

China assigned to both the Chinese and SE Asian clusters and represented a third mitochondrial 211 

clade. This result suggests substructure within the ancestral range, although the samples from 212 

northeastern China may not be representative of the ancestral range but instead of an isolated, 213 

divergent population that has retained high genetic diversity (Tables S4, S6). 214 

 215 

Southern Expansion into SE Asia- A southward range expansion into SE Asia was supported by 216 

the population tree topology, higher heterozygosity, low nuclear FST with China, and elevated 217 

coancestry coefficients between populations in SE Asia, China, and Russia (Fig. 3, Tables S3, 218 

S4). Given evidence for an early southward expansion (Fig. S10), we hypothesize that the 219 

founding of SE Asia was accompanied by a weak bottleneck resulting in relatively low loss of 220 

genetic diversity. However, following founding regional diversification occurred as we observed 221 

substructure in both the nuclear and mitochondrial genomes (Fig. 2, 4, S7). 222 

 223 

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/065458doi: bioRxiv preprint first posted online Jul. 23, 2016; 

http://dx.doi.org/10.1101/065458
http://creativecommons.org/licenses/by-nc-nd/4.0/


Two Independent Eastward Expansions - We observed population divergence along the first 224 

eastward expansion from eastern Russia into the Aleutian Archipelago based on PCA (Fig. S6). 225 

Both the population tree topology and PCA indicate that a second eastward expansion progressed 226 

from Asia to western North America (Fig. S6, S10). While the Western North America cluster 227 

was observed in both northern and southern Pacific coast localities (Fig. S5A), we cannot 228 

extrapolate that this cluster represents the entirety of the coastline. Specifically, Sitka, Ketchikan, 229 

Vancouver, and the Bay Area are all located between the Alaskan cities and San Diego County 230 

that comprise the Western North America cluster. Further, the timing of these expansions is an 231 

open question. While the population tree indicated divergence of these two expansions prior to 232 

divergence of the non-Asian cluster, the historical record attributes brown rats in the Aleutian 233 

Archipelago to Russian fur traders in the 1780s (Black 1983), which is not consistent with rats 234 

entering Europe in the 1500s  (Armitage 1993). Thus, evidence of early divergence may be a 235 

consequence of unsampled Asian populations sharing ancestry with the Aleutian Archipelago 236 

and Western North America clusters. 237 

 238 

Westward Range Expansion into Europe- The low drift along the backbone of the population tree 239 

for the non-Asian cluster is indicative of rapid westward expansion (Fig. S10). Limited 240 

inferences could be drawn about western Asia and the Middle East because of sampling 241 

constraints, but we hypothesize that the region was colonized by the range expansion of the non-242 

Asian cluster. We observed three mitochondrial clades in Europe, where clade 3 shared ancestry 243 

with SE Asia and clade 8 shared ancestry with eastern Russia, while clade 10 is a European 244 

derived clade (Fig. 3, Table S6). Thus, Europe may have been independently colonized three 245 

times, although the routes remain an open question. We hypothesize that clade 10 arrived 246 

overland around the Mediterranean Sea, similar to black rats (Aplin, et al. 2011). We hypothesize 247 

that following the independent colonizations, the genetic backgrounds admixed prior to 248 

divergence between the N Euro and W Euro clusters given the low nuclear FST (Table S4). 249 

 250 

Notably, we detected genetic differentiation of Bergen, Norway and Malmo, Sweden within the 251 

N Euro cluster (Fig. 2). This pattern suggests drift following either a strong founder effect or 252 

population isolation and limited gene flow. Isolation is likely driving the pattern observed in 253 
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Bergen, which is separated from eastern Norway by mountains that are thought to limit 254 

movement of commensal rodents (Jones, et al. 2010). 255 

 256 

Range Expansion of Rats by Europeans 257 

We detected a fifth range expansion that can be attributed to transport by western European 258 

imperial powers (1600s-1800s) to former colonial territories (Fig. 2, 3, S4, S9).  For example, we 259 

observed high proportions of W Euro ancestry in samples from the North and South Islands of 260 

New Zealand, which is consistent with the introduction of brown rats by British colonists, as has 261 

also been inferred for black rats (Aplin, et al. 2011) and domestic cats in Australia (Spencer, et 262 

al. 2016). We observed admixture on both islands (Fig. 3) although nuclear ancestry proportions 263 

differed between the islands with higher proportions of N Euro and Vancouver ancestry on the 264 

North Island. The South Island had higher SE Asia and Western North American ancestry (Fig. 265 

2, 3, S4); these ancestry components may be attributed to the seal skin trade with southern China 266 

by sealers from the USA (King 2016). 267 

 268 

The samples from Nigeria and Mali formed a sister clade in FINESTRUCTURE, which likely 269 

reflects a shared history as French colonies, although Senegal fell outside of the clade (Fig. 3). 270 

Mali had elevated W Euro ancestry compared to Nigeria which may be a consequence of 271 

multiple introductions from European sources. South American countries exhibited a 272 

paraphyletic FINESTRUCTURE topology that is suggestive of colonization from multiple 273 

locations. This result was also supported by the presence of all three mitochondrial clades found 274 

in Europe (Fig. 4A). Further sampling from Portugal and Spain would better resolve the origins 275 

of Brazilian populations and clarify relationships of former colonies elsewhere in the world. 276 

 277 

The complex distribution of clusters in North America is suggestive of a dynamic colonization 278 

history, including independent introductions on both the Atlantic and Pacific coasts (Fig. 2). We 279 

detected mtDNA haplotypes of European ancestry in the eastern and central USA, whereas the 280 

Pacific seaboard harbors high mtDNA haplotype diversity from European and Asian clades (Fig. 281 

4). These results are consistent with prior observations of four high-frequency mtDNA 282 

haplotypes across Alaska and the continental USA, of which three were observed in east Asia 283 

and one in Europe (Lack, et al. 2013). Along the Pacific coast, cities with both Asian and non-284 
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Asian nuclear ancestry were observed (Fig. 2), which parallels the pattern observed in black rats 285 

(Aplin, et al. 2011). Given the bicoastal introductions, it is unsurprising to observe admixture in 286 

North American cities such as the San Francisco Bay Area and Albuquerque, where each has 287 

elevated coancestry coefficients with Asian and non-Asian clusters (Fig. 3). We also observed 288 

limited eastward dispersal of Asian genotypes, although other work has found evidence of 289 

greater inland penetration (Lack, et al. 2013). 290 

 291 

Rats from Haida Gwaii off the coast of British Columbia, Canada, were consistently recovered as 292 

a separate cluster in ADMIXTURE, and had high coancestry coefficients and FST with other 293 

populations (Fig. 3, Table S4), indicating substantial genetic drift following colonization. Rats 294 

were introduced to Haida Gwaii in the late 1700s via Spanish and/or British mariners, and have 295 

been subject to recent, intensive eradication efforts that may have heightened genetic drift 296 

(Hobson, et al. 1999).  297 

 298 

Intra-urban Population Structure of Brown Rats 299 

Brown rats exhibit population structure over a remarkably fine-grained spatial scale (Fig. 3); 300 

specifically, rat population structure exists at the scale of both cities and neighborhoods. We 301 

found evidence of heterogeneity among cities as some appear to support one population while 302 

others support multiple populations. For example, we detected a single population across 303 

multiple neighborhoods in Manhattan (NYC, USA), whereas four genetic clusters (Fig. 3) were 304 

observed in a neighborhood in Salvador, Brazil, a result that confirmed previous microsatellite 305 

based analyses (Kajdacsi, et al. 2013). Although denser sampling will be needed to confirm 306 

whether these groups represent distinct populations or reflect oversampling of intra-city pockets 307 

of highly related individuals, intra-city clustering likely represents substructure considering the 308 

global design of our SNP dataset. Observations of highly variable intra-city structure suggest the 309 

following three scenarios: first, effective population size rapidly increases after invasion, 310 

possibly driven by high urban resource levels, and thus genetic drift may have a relatively weak 311 

effect on population differentiation. Second, new immigrants that arrive after initial invasion and 312 

establishment of rats in a city may be limited in their capacity to either establish new colonies or 313 

join existing colonies (Calhoun 1962), thereby limiting ongoing gene flow from other areas due 314 

to competitive exclusion (Waters 2011). Gene flow into colonies may also be sex-biased as 315 
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females were recruited more readily than males in a two-year behavioral study of brown rats 316 

(Calhoun 1962). We did observe gene flow in our dataset, including an individual matching 317 

Coastal Alaska into the Bay Area and an individual with high Sonoma Valley ancestry in 318 

Thailand (Fig. 2B), thus migration due to contemporary human-assisted movement is possible 319 

and ongoing. However, given increasing connectivity due to trade and continual movement of 320 

invasive species (Banks, et al. 2015), we expected greater variability in ancestry proportions 321 

within cities than observed (Fig. S4). Third, cityscapes vary in their connectivity where some 322 

cities contain strong physical and/or environmental barriers facilitating differentiation and others 323 

do not. Identifying commonalities and differences among cityscapes with one or multiple rat 324 

populations should be a goal for understanding how rats interact with their environment, 325 

particularly in relation to the effect of landscape connectivity for pest and disease control efforts. 326 

 327 

Significance 328 

Understanding the Spread of Zoonotic Pathogens- Understanding the global population structure 329 

of brown rats offers novel perspectives on the forces driving the spread of zoonotic disease. Our 330 

inference that competitive exclusion may limit entry into established populations helps explain 331 

why zoonotic pathogens do not always exhibit the same spatial distribution as rat hosts as well as 332 

the patchy distribution of presumably ubiquitous pathogens within and between cities 333 

(Himsworth, et al. 2013). While within-colony transmission of disease and natal dispersal 334 

between colonies are important factors related to the prevalence of zoonotic disease, our results 335 

also suggest that contemporary human-aided transport of infected rats does not contribute to the 336 

global spread of pathogens, as we would expect higher variability of ancestry proportions within 337 

cities if rats were successfully migrating between cities. Additionally, our results indicate that 338 

rats with different genomic backgrounds may have variable susceptibilities to pathogens, though 339 

differential susceptibility likely depends on concordance between the geographic origins of 340 

pathogens and rats. While this idea needs pathogen specific testing, it could have substantial 341 

implications for global disease transmission. 342 

 343 

Rat Eradication Programs for Species Conservation- Eradication of invasive Rattus species on 344 

islands and in ecosystems with high biodiversity is a priority for conservation of at-risk species, 345 

as rats outcompete or kill native fauna. It remains challenging to gauge the success of eradication 346 
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programs, because it is difficult to distinguish between post-intervention survival and 347 

reproduction as opposed to recolonization by new immigrants (Piertney, et al. 2016). 348 

Understanding fine-scale population genetic structure using dense nuclear marker sets (Robins, 349 

et al. 2016), as in this study, would allow managers to more clearly assess outcomes and next 350 

steps following an eradication campaign. For example, genomic analyses could illustrate that an 351 

area has been recolonized by immigration from specific source populations, thereby allowing 352 

managers to shift efforts towards biosecurity to reduce the likelihood of establishment by 353 

limiting the influx of potential immigrants. 354 

 355 

MATERIALS and METHODS 356 

We obtained rat tissue samples from field-trapped specimens, museum or institute collections, 357 

and wildlife markets (Tables S1, S2). As GPS coordinates for individuals were not always 358 

available, the sampling location was recorded as either the city, nearest town, or island where 359 

rats were collected. 360 

 361 

DNA Extraction, RAD sequencing, and SNP calling 362 

We extracted DNA following the manufacturer’s protocols using Qiagen DNeasy kits (Valencia, 363 

CA). We prepared double digest restriction-site associated DNA sequencing (ddRAD-Seq) 364 

libraries with 500-1000ng of genomic DNA from each sample and one negative control made up 365 

of water. Briefly, samples were digested with SphI and MluCI before ligation of unique barcoded 366 

adapters. We pooled 48 barcoded samples each in 10 libraries at equimolar concentrations. We 367 

then selected fragments from 340-412 bp (target = 376 bp) using a Pippin Prep (Sage Science, 368 

Beverly, MA). The size-selected pools were PCR-amplified for 10-12 cycles using Phusion PCR 369 

reagents (New England Biolabs, Ipswich, MA) and primers that added an Illumina multiplexing 370 

read index. Final libraries were checked for concentration and fragment size on a BioAnalyzer 371 

(Agilent Technologies, Santa Clara, CA), then sequenced (2 x 125bp paired-end) at the New 372 

York Genome Center across five lanes of an Illumina HiSeq 2500. 373 

 374 

We demultiplexed the raw reads using the process_radtags script in STACKS v1.35 (Catchen, et 375 

al. 2013), then aligned reads for each individual to the Rattus norvegicus reference genome 376 

(Rnor_6.0) (Gibbs, et al. 2004) using Bowtie v2.2.6 (Langmead and Salzberg 2012) with default 377 
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parameters. To assess the number of mismatches allowed between stacks and the minimum depth 378 

of coverage for each stack when building RADtags (-n and -m flags respectively) in STACKS, 379 

we processed two samples under a number of scenarios and compared the number of RADtags 380 

that formed as de novo loci versus those that mapped to the reference R. norvegicus genome. We 381 

first assessed the M parameter by holding m constant at three while varying M between two and 382 

five in the ustacks program. We observed a decrease in the undermerged RADs with increasing 383 

values of M; we selected M = 4 for both the final RAD processing and as the constant level when 384 

we allowed m to vary between two and five. We selected m = 3 to balance between removing 385 

real loci and stacks that erroneously mapped to the reference genome. In the cstacks program we 386 

assessed the number of allowed mismatches between tags (n) from zero to two. We observed 387 

little difference for this parameter between our test values and decided to use n = 2 as a 388 

conservative measure. 389 

 390 

We initially built the STACKS catalog with all of the reference-aligned samples (n = 447) using 391 

the ref_map pipeline. Following processing, we filtered for the following: biallelic SNPs, a 392 

minor allele frequency (MAF) greater than or equal to 0.05, SNPs genotyped in 80% of samples, 393 

and only one SNP per RADtag (STACKS flag --write_single_snp); additionally, SNPs that 394 

mapped to either the Y chromosome or mitochondrial genome were removed. This dataset had 395 

37,730 SNPs. Following sample collection and genotyping, we were informed that R. rattus 396 

samples had been collected in Mali; we capitalized on this by confirming the species 397 

identification for each sample using principal components analysis (PCA) in EIGENSOFT 398 

v5.0.2 (Patterson, et al. 2006; Price, et al. 2006), and ADMIXTURE v1.23 (Alexander, et al. 399 

2009) for two clusters. We identified 33 R. rattus and 414 R. norvegicus samples (Fig. S1). 400 

 401 

We reran ref_map using only the confirmed R. norvegicus samples, and filtered similarly as 402 

described above plus an additional filter to remove individuals with greater than 60% missing 403 

data. To add genotypes from 11 of the R. norvegicus samples collected in Harbin, China 404 

(European Nucleotide Archive ERP001276) (Deinum, et al. 2015), we mapped reads to the 405 

Rnor_6.0 genome using SAMTOOLS v1.2 (Li, et al. 2009) then extracted the SNP dataset using 406 

mpileup with a position list. We removed related individuals within, but not between, sampling 407 

sites by assessing relatedness in KING v1.4 (Manichaikul, et al. 2010). For each pair of 408 
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individuals with relatedness estimators greater than 0.2, one individual was removed from the 409 

analysis (n = 22). Subsequently, we randomly thinned 14 samples from Vancouver, Canada as 410 

preliminary analyses indicated oversampling. Thus the final nuclear R. norvegicus dataset 411 

contained 32,127 SNPs genotyped in 314 individuals (Table S1). 412 

 413 

From the initial processing in STACKS, we extracted the SNPs that mapped to the mitochondrial 414 

genome to produce a second dataset with 115 SNPs (see Table S5 for base pair positions within 415 

the R. norvegicus reference mitochondrial genome, GenBank accession AY172581.1). We 416 

extracted the same positions from the mitochondrial genomes of samples from Harbin, China. 417 

We allowed up to 35% missing data per individual and identified 103 haplotypes using 418 

COLLAPSE v1.2 (Posada 2004) in 144 individuals. We built a haplotype network using 419 

SPLITSTREE v4.13.1 (Huson and Bryant 2006) and identified the haplotypes grouped into 10 420 

clades (Table S6). 421 

 422 

Population Genomic Analyses 423 

To describe population structure, we ran ADMIXTURE (Alexander, et al. 2009) at each cluster 424 

from 1 to 40. Given known effects of sampling bias on clustering analyses, we repeated this 425 

analysis with a subset of the data where four or five samples from each city were randomly 426 

selected (n = 158). The results supported K=14 clusters which supported the analysis of our full 427 

dataset. We also subdivided the full dataset into the Asian and non-Asian clusters and reran 428 

ADMIXTURE at each cluster from 1 to 25. We used the CV error values to identify the best-429 

supported clustering patterns across the range. Using the same datasets (full, Asian, and non-430 

Asian), we ran PCA in EIGENSOFT (Patterson, et al. 2012) and identified significant PCs using 431 

Tracy-Widom statistics. 432 

 433 

We also estimated evolutionary clusters using FINESTRUCTURE v2.0.7 (Lawson, et al. 2012) 434 

which elucidates the finest grained clusters by accounting for linkage disequilibrium and allows 435 

detailed admixture inference based upon the pairwise coancestry coefficients. We limited this 436 

analysis to the 20 autosomes (31,489 SNPs), removing SNPs on unassembled scaffolds in the 437 

dataset. Data for each chromosome were phased and imputed using fastPHASE v1.2 (Scheet and 438 

Stephens 2006). Initial analyses using the linked model indicated our data were effectively 439 
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unlinked (c-factor 0.0104); therefore, we ran the unlinked model. We used default settings except 440 

for the following parameters: 25% of the data were used for initial EM estimation; 750,000 441 

iterations of the MCMC were run (375,000 of which were burnin) with 1,000 samples retained, 442 

20,000 tree comparisons, and 500,000 steps of the tree maximization were run. We viewed 443 

MCMC trace files to confirm stability of all parameters. 444 

 445 

To understand patterns of population divergence, we ran TREEMIX v1.12 (Pickrell and 446 

Pritchard 2012). As the R. rattus data (see Supplemental Methods) were mapped to the R. 447 

norvegicus genome, we extracted SNPs at the same genomic positions for 31 black rats (we 448 

removed two samples showing admixture; Fig. S1) with SAMTOOLS (Li, et al. 2009) mpileup 449 

function using a position list. We selected the sampling location with the largest sample size 450 

from each of the well supported clusters at K=13 (Fig. 2, S4), plus the R. rattus samples for the 451 

outgroup (which were not subdivided due to lack of population structure, Fig. S11). We added 452 

migration edges to the population tree sequentially by fixing the population tree to the tree with 453 

n-1 migration edges, where blocks of 1,000 SNPs and the sample size correction were enabled. 454 

We assessed both the proportion of variance (Fig. S12A) and the residuals of the population tree 455 

(Fig. S12B) and chose the model with three migration edges. We decided to thin the sampling 456 

areas due to uneven sampling between the broad Asian and non-Asian clusters; both factors 457 

should affect the variance in the model, thus we presented a potentially underfit versus overfit 458 

model. We ran f3 tests within TREEMIX and observed no significant relationships, likely due to 459 

highly complex admixture patterns (Patterson, et al. 2012). 460 

 461 

For the nuclear dataset, we calculated expected heterozygosity (HE) and FIS within each of the 13 462 

clusters using ARLEQUIN v3.5.1.3 (Excoffier and Lischer 2010), and pairwise FST using 463 

VCFTOOLS v0.1.13 and the Weir and Cockerham estimator (Weir and Cockerham 1984; 464 

Danecek, et al. 2011). For the mitochondrial dataset, we calculated pairwise FST between the 465 

clusters identified in the nuclear dataset in ARLEQUIN. 466 

 467 
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FIGURES 610 

 611 

Fig. 1- Principal components analysis using 32k nuclear SNPs for worldwide Rattus norvegicus 612 

samples for the first two principal components.  Continents are designated by shape (Asia: 613 

circles; Europe: X; Africa: star; North America: square; South America: triangle; New Zealand: 614 

diamond) with substructured populations designated by color for the 13 clusters inferred using 615 

model-based ancestry analyses (Figs. 2, S4). 616 
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 617 

Fig. 2- (A) Map of brown rat sampling locations with average proportion of ancestry per site 618 

inferred using 32k nuclear SNPs. Ancestry was based on ADMIXTURE estimates from 13 619 

clusters (China: brown; SE Asia: light brown; Russia: pink; Aleutian Archipelago: orange; 620 

western North America: gold; W Euro: light blue; N Euro: purple; Kano: turquoise; Sonoma 621 

Valley: medium blue; Haida Gwaii: dark blue; Vancouver: cerulean; Bergen: medium purple; 622 

Malmo: light purple). (B) Ancestry proportions from ADMIXTURE for 314 samples at two, six, 623 

13, and 26 clusters. 624 

  625 
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 626 

Fig. 3- Coancestry heat map of brown rats, where light and dark brown, respectively denote 627 

lower and higher coancestry. The 101 populations identified by FINESTRUCTURE appear 628 

along the diagonal.  A bifurcating tree and select sampling locations are shown on the left, and 629 

assignment to one of the 13 clusters from Fig. 2 shown on top. 630 
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 632 

Fig. 4- (A) Map of the proportion of mitochondrial clades at each sampling site for 144 633 

individuals and (B) SNP haplotype network with 103 haplotypes in 10 clades (clade 1: brown; 2: 634 

beige; 3: pale yellow; 4: gold; 5: light brown; 6: pale green; 7: pink; 8: light pink; 9: dark blue; 635 

10: light blue). 636 
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