159 research outputs found

    Geoarchaeology and Heritage Management:Identifying and Quantifying Multi-Scalar Erosional Processes at Kisese II Rockshelter, Tanzania

    Get PDF
    Natural and anthropogenically induced soil erosion can cause serious loss of the archaeological record. Our work shows the value of multi-scalar geoarchaeological study when excavating and re-excavating rockshelters in a highly dynamic sedimentary environment where erosion is prominent. Here we present our work on Kisese II rockshelter, Tanzania, originally excavated in the 1950s and largely unpublished, that preserves an important Pleistocene-Holocene archaeological record integral to understanding the deep history of the Kondoa Rock-Art World Heritage Center. Unlike rockshelters in quiescent tectonic settings, like much of central Europe or South Africa, Kisese II exists in highly dynamic sedimentary environments associated with the active tectonics of the Great Rift Valley system exacerbated by human-induced environmental and climate change. We report on our 2017 and 2019 exploratory research that includes integrated regional-, landscape-, and site-scale geoarchaeological analyses of past and present sedimentary regimes and micromorphological analyses of the archaeological sediments. Historical records and aerial photographs document extensive changes in vegetation cover and erosional regimes since the 1920s, with drastic changes quantified between 1960 and 2019. Field survey points to an increased erosion rate between 2017 and 2019. To serve future archaeologists, heritage specialists, and local populations we combine our data in a geoarchaeological catena that includes soil, vegetation, fauna, and anthropogenic features on the landscape. At the site, micromorphological coupled with chronological analyses demonstrate the preservation of in situ Pleistocene deposits. Comparison of photographs from the 1956 and 2019 excavations show a maximum sediment loss of 68 cm in 63 years or >10% of >6-m-thick sedimentary deposit. In the studied area of the rockshelter we estimate ∼1 cm/yr of erosion, suggesting the ongoing removal of much of the higher archaeological sediments which, based on the coarse stratigraphic controls and chronology of the original Inskeep excavations, would suggest the loss of much of the archaeological record of the last ∼4000 years. These multi-scalar data are essential for the construction of appropriate mitigation strategies and further study of the remaining stratigraph

    A Platform-Independent Method for Detecting Errors in Metagenomic Sequencing Data: DRISEE

    Get PDF
    We provide a novel method, DRISEE (duplicate read inferred sequencing error estimation), to assess sequencing quality (alternatively referred to as “noise” or “error”) within and/or between sequencing samples. DRISEE provides positional error estimates that can be used to inform read trimming within a sample. It also provides global (whole sample) error estimates that can be used to identify samples with high or varying levels of sequencing error that may confound downstream analyses, particularly in the case of studies that utilize data from multiple sequencing samples. For shotgun metagenomic data, we believe that DRISEE provides estimates of sequencing error that are more accurate and less constrained by technical limitations than existing methods that rely on reference genomes or the use of scores (e.g. Phred). Here, DRISEE is applied to (non amplicon) data sets from both the 454 and Illumina platforms. The DRISEE error estimate is obtained by analyzing sets of artifactual duplicate reads (ADRs), a known by-product of both sequencing platforms. We present DRISEE as an open-source, platform-independent method to assess sequencing error in shotgun metagenomic data, and utilize it to discover previously uncharacterized error in de novo sequence data from the 454 and Illumina sequencing platforms

    Paracellular Absorption: A Bat Breaks the Mammal Paradigm

    Get PDF
    Bats tend to have less intestinal tissue than comparably sized nonflying mammals. The corresponding reduction in intestinal volume and hence mass of digesta carried is advantageous because the costs of flight increase with load carried and because take-off and maneuverability are diminished at heavier masses. Water soluble compounds, such as glucose and amino acids, are absorbed in the small intestine mainly via two pathways, the transporter-mediated transcellular and the passive, paracellular pathways. Using the microchiropteran bat Artibeus literatus (mean mass 80.6±3.7 g), we tested the predictions that absorption of water-soluble compounds that are not actively transported would be extensive as a compensatory mechanism for relatively less intestinal tissue, and would decline with increasing molecular mass in accord with sieve-like paracellular absorption. Using a standard pharmacokinetic technique, we fed, or injected intraperitonealy the metabolically inert carbohydrates L-rhamnose (molecular mass = 164 Da) and cellobiose (molecular mass = 342 Da) which are absorbed only by paracellular transport, and 3-O-methyl-D-glucose (3OMD-glucose) which is absorbed via both mediated (active) and paracellular transport. As predicted, the bioavailability of paracellular probes declined with increasing molecular mass (rhamnose, 90±11%; cellobiose, 10±3%, n = 8) and was significantly higher in bats than has been reported for laboratory rats and other mammals. In addition, absorption of 3OMD-glucose was high (96±11%). We estimated that the bats rely on passive, paracellular absorption for more than 70% of their total glucose absorption, much more than in non-flying mammals. Although possibly compensating for less intestinal tissue, a high intestinal permeability that permits passive absorption might be less selective than a carrier-mediated system for nutrient absorption and might permit toxins to be absorbed from plant and animal material in the intestinal lumen

    The CCP4 suite: integrative software for macromolecular crystallography

    Get PDF
    The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.Jon Agirre is a Royal Society University Research Fellow (UF160039 and URF\R\221006). Mihaela Atanasova is funded by the UK Engineering and Physical Sciences Research Council (EPSRC; EP/R513386/1). Haroldas Bagdonas is funded by The Royal Society (RGF/R1/181006). Jose´ Javier Burgos-Ma´rmol and Daniel J. Rigden are supported by the BBSRC (BB/S007105/1). Robbie P. Joosten is funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 871037 (iNEXTDiscovery) and by CCP4. This work was supported by the Medical Research Council as part of United Kingdom Research and Innovation, also known as UK Research and Innovation: MRC file reference No. MC_UP_A025_1012 to Garib N. Murshudov, which also funded Keitaro Yamashita, Paul Emsley and Fei Long. Robert A. Nicholls is funded by the BBSRC (BB/S007083/1). Soon Wen Hoh is funded by the BBSRC (BB/T012935/1). Kevin D. Cowtan and Paul S. Bond are funded in part by the BBSRC (BB/S005099/1). John Berrisford and Sameer Velankar thank the European Molecular Biology Laboratory–European Bioinformatics Institute, who supported this work. Andrea Thorn was supported in the development of AUSPEX by the German Federal Ministry of Education and Research (05K19WWA and 05K22GU5) and by Deutsche Forschungsgemeinschaft (TH2135/2-1). Petr Kolenko and Martin Maly´ are funded by the MEYS CR (CZ.02.1.01/0.0/0.0/16_019/0000778). Martin Maly´ is funded by the Czech Academy of Sciences (86652036) and CCP4/STFC (521862101). Anastassis Perrakis acknowledges funding from iNEXT (grant No. 653706), iNEXT-Discovery (grant No. 871037), West-Life (grant No. 675858) and EOSC-Life (grant No. 824087) funded by the Horizon 2020 program of the European Commission. Robbie P. Joosten has been the recipient of a Veni grant (722.011.011) and a Vidi grant (723.013.003) from the Netherlands Organization for Scientific Research (NWO). Maarten L. Hekkelman, Robbie P. Joosten and Anastassis Perrakis thank the Research High Performance Computing facility of the Netherlands Cancer Institute for providing and maintaining computation resources and acknowledge the institutional grant from the Dutch Cancer Society and the Dutch Ministry of Health, Welfare and Sport. Tarik R. Drevon is funded by the BBSRC (BB/S007040/1). Randy J. Read is supported by a Principal Research Fellowship from the Wellcome Trust (grant 209407/Z/17/Z). Atlanta G. Cook is supported by a Wellcome Trust SRF (200898) and a Wellcome Centre for Cell Biology core grant (203149). Isabel Uso´n acknowledges support from STFC-UK/CCP4: ‘Agreement for the integration of methods into the CCP4 software distribution, ARCIMBOLDO_LOW’ and Spanish MICINN/AEI/FEDER/UE (PID2021-128751NB-I00). Pavol Skubak and Navraj Pannu were funded by the NWO Applied Sciences and Engineering Domain and CCP4 (grant Nos. 13337 and 16219). Bernhard Lohkamp was supported by the Ro¨ntgen A˚ ngstro¨m Cluster (grant 349-2013-597). Nicholas Pearce is currently funded by the SciLifeLab and Wallenberg Data Driven Life Science Program (grant KAW 2020.0239) and has previously been funded by a Veni Fellowship (VI.Veni.192.143) from the Dutch Research Council (NWO), a Long-term EMBO fellowship (ALTF 609-2017) and EPSRC grant EP/G037280/1. David M. Lawson received funding from BBSRC Institute Strategic Programme Grants (BB/P012523/1 and BB/P012574/1). Lucrezia Catapano is the recipient of an STFC/CCP4-funded PhD studentship (Agreement No: 7920 S2 2020 007).Peer reviewe

    Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States

    Get PDF
    Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks

    Methods for high-dimensonal analysis of cells dissociated from cyropreserved synovial tissue

    Get PDF
    Abstract Background Detailed molecular analyses of cells from rheumatoid arthritis (RA) synovium hold promise in identifying cellular phenotypes that drive tissue pathology and joint damage. The Accelerating Medicines Partnership RA/SLE Network aims to deconstruct autoimmune pathology by examining cells within target tissues through multiple high-dimensional assays. Robust standardized protocols need to be developed before cellular phenotypes at a single cell level can be effectively compared across patient samples. Methods Multiple clinical sites collected cryopreserved synovial tissue fragments from arthroplasty and synovial biopsy in a 10% DMSO solution. Mechanical and enzymatic dissociation parameters were optimized for viable cell extraction and surface protein preservation for cell sorting and mass cytometry, as well as for reproducibility in RNA sequencing (RNA-seq). Cryopreserved synovial samples were collectively analyzed at a central processing site by a custom-designed and validated 35-marker mass cytometry panel. In parallel, each sample was flow sorted into fibroblast, T-cell, B-cell, and macrophage suspensions for bulk population RNA-seq and plate-based single-cell CEL-Seq2 RNA-seq. Results Upon dissociation, cryopreserved synovial tissue fragments yielded a high frequency of viable cells, comparable to samples undergoing immediate processing. Optimization of synovial tissue dissociation across six clinical collection sites with ~ 30 arthroplasty and ~ 20 biopsy samples yielded a consensus digestion protocol using 100 μg/ml of Liberase™ TL enzyme preparation. This protocol yielded immune and stromal cell lineages with preserved surface markers and minimized variability across replicate RNA-seq transcriptomes. Mass cytometry analysis of cells from cryopreserved synovium distinguished diverse fibroblast phenotypes, distinct populations of memory B cells and antibody-secreting cells, and multiple CD4+ and CD8+ T-cell activation states. Bulk RNA-seq of sorted cell populations demonstrated robust separation of synovial lymphocytes, fibroblasts, and macrophages. Single-cell RNA-seq produced transcriptomes of over 1000 genes/cell, including transcripts encoding characteristic lineage markers identified. Conclusions We have established a robust protocol to acquire viable cells from cryopreserved synovial tissue with intact transcriptomes and cell surface phenotypes. A centralized pipeline to generate multiple high-dimensional analyses of synovial tissue samples collected across a collaborative network was developed. Integrated analysis of such datasets from large patient cohorts may help define molecular heterogeneity within RA pathology and identify new therapeutic targets and biomarkers

    A genetic history of the pre-contact Caribbean

    Get PDF
    Humans settled the Caribbean about 6,000 years ago, and ceramic use and intensified agriculture mark a shift from the Archaic to the Ceramic Age at around 2,500 years ago1,2,3. Here we report genome-wide data from 174 ancient individuals from The Bahamas, Haiti and the Dominican Republic (collectively, Hispaniola), Puerto Rico, Curaçao and Venezuela, which we co-analysed with 89 previously published ancient individuals. Stone-tool-using Caribbean people, who first entered the Caribbean during the Archaic Age, derive from a deeply divergent population that is closest to Central and northern South American individuals; contrary to previous work4, we find no support for ancestry contributed by a population related to North American individuals. Archaic-related lineages were >98% replaced by a genetically homogeneous ceramic-using population related to speakers of languages in the Arawak family from northeast South America; these people moved through the Lesser Antilles and into the Greater Antilles at least 1,700 years ago, introducing ancestry that is still present. Ancient Caribbean people avoided close kin unions despite limited mate pools that reflect small effective population sizes, which we estimate to be a minimum of 500–1,500 and a maximum of 1,530–8,150 individuals on the combined islands of Puerto Rico and Hispaniola in the dozens of generations before the individuals who we analysed lived. Census sizes are unlikely to be more than tenfold larger than effective population sizes, so previous pan-Caribbean estimates of hundreds of thousands of people are too large5,6. Confirming a small and interconnected Ceramic Age population7, we detect 19 pairs of cross-island cousins, close relatives buried around 75 km apart in Hispaniola and low genetic differentiation across islands. Genetic continuity across transitions in pottery styles reveals that cultural changes during the Ceramic Age were not driven by migration of genetically differentiated groups from the mainland, but instead reflected interactions within an interconnected Caribbean world1,8.This work was supported by a grant from the National Geographic Society to M. Pateman to facilitate analysis of skeletal material from The Bahamas and by a grant from the Italian ‘Ministry of Foreign Affairs and International Cooperation’ (Italian archaeological, anthropological and ethnological missions abroad, DGPSP Ufficio VI). D.R. was funded by NSF HOMINID grant BCS-1032255, NIH (NIGMS) grant GM100233, the Paul Allen Foundation, the John Templeton Foundation grant 61220 and the Howard Hughes Medical Institute.Peer reviewe

    The CCP4 suite : integrative software for macromolecular crystallography

    Get PDF
    The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world

    KBase: The United States Department of Energy Systems Biology Knowledgebase.

    Get PDF
    corecore