46 research outputs found
Use of Microtremors for the Estimation of Ground Vibration Characteristics
Short-period micro tremor array observation is conducted at five sites in the Tokyo Metropolitan area of Japan. The Fourier spectra of horizontal and vertical components show variations in time, but their ratio is stable for different time instants. The characteristics of the amplitude ratio are similar to that of Rayleigh wave and the period correspond to the peak ratio correspond to the predominant period of the sites for shear wave propagation. A parametric study for two-layered models reveals that the peaks for Rayleigh wave and shear wave are close for the ground having large impedance ratio. The F-K spectrum analysis using vertical components obtained the phase velocity close to the dispersion curve for the Rayleigh wave
Efficient and General Synthesis of Novel β-Polyfluoroalkoxy Vinamidinium Salts
Novel β-polyfluoroalkoxy vinamidinium salts 3 and/or 4 were synthesized in good yields by the reaction of N-(2- polyfluoroalkoxy-3 ,3-difluoro-1-propenyI)trimethylammonium iodides (2), prepared from N-(2,3,3-trifluoro-1-propenyl)trimethylammonium iodide (1), with secondary amines in MeCN at 70 °C for 1 h. The salts were also obtainable in comparable yields by the one-pot reaction of 1 with sodium polyfluoroalkoxide followed by treatment with amines
The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
DOCK2 is involved in the host genetics and biology of severe COVID-19
「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.
X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution
Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network
Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium provided one of the most comprehensive maps of transcription start sites (TSSs) in several species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at unconventional regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we develop Cap Trap RNA-seq, a technology which combines cap trapping and long read MinION sequencing. We train sequence-based deep learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the importance of STR surrounding sequences not only to distinguish STR classes, but also to predict the level of transcription initiation. Importantly, genetic variants linked to human diseases are preferentially found at STRs with high transcription initiation level, supporting the biological and clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism
Transitional impact of short‐ and long‐term outcomes of a randomized controlled trial to evaluate laparoscopic versus open surgery for colorectal cancer from Japan Clinical Oncology Group Study JCOG0404
Abstract Background The JCOG0404 randomized controlled trial conducted to compare laparoscopic surgery (LAP) with open surgery (OP) for stage II/III colon cancer showed better short‐term outcomes and equal long‐term outcomes of LAP versus OP. Technical instrumentation of surgery and anticancer agents given during the registration period might have affected the outcomes. Aim To evaluate outcomes according to the registration periods. Methods The overall registration period was divided into three periods (first: 2004‐2005, second: 2006‐2007 and third: 2008‐2009). Short‐term and long‐term outcomes were compared between registration periods. Results In total, 1057 patients were registered. Numbers of patients undergoing each approach for each of the three periods (1st/2nd/3rd) were 528 for OP (106/244/178) and 529 for LAP (106/246/177). Operation time (minutes) did not change between the periods for OP (160/156/161) or LAP (205/211/219). Blood loss (mL) gradually decreased in the latter two periods: (119/80/75) for OP and (35/28/25) for LAP. Incidence of complications (%) decreased in the latter periods for OP (27.6/20.3/21.3), whereas that for LAP remained consistently low (14.3/14.8/13.6). There was no particular trend in 5‐year overall survival and recurrence‐free survival depending on the period regardless of treatment. D3 dissection rates were 95% or more for all periods in both groups. Conclusions Operation time and survival rates did not change over time, whereas blood loss in OP improved in the latter periods. Quality control applied in this trial might have been effective in producing such safe endpoints. (ClinicalTrials.gov, number NCT00147134, UMIN Clinical Trials Registry, number C000000105.
Comparison of CAGE and RNA-seq transcriptome profiling using clonally amplified and single-molecule next-generation sequencing
CAGE (cap analysis gene expression) and RNA-seq are two major technologies used to identify transcript abundances as well as structures. They measure expression by sequencing from either the 59 end of capped molecules (CAGE) or tags randomly distributed along the length of a transcript (RNA-seq). Library protocols for clonally amplified (Illumina, SOLiD, 454 Life Sciences [Roche], Ion Torrent), second-generation sequencing platforms typically employ PCR pre-amplification prior to clonal amplification, while third-generation, single-molecule sequencers can sequence unamplified libraries. Although these transcriptome profiling platforms have been demonstrated to be individually reproducible, no systematic comparison has been carried out between them. Here we compare CAGE, using both second-and third-generation sequencers, and RNA-seq, using a second-generation sequencer based on a panel of RNA mixtures from two human cell lines to examine power in the discrimination of biological states, detection of differentially expressed genes, linearity of measurements, and quantification reproducibility. We found that the quantified levels of gene expression are largely comparable across platforms and conclude that CAGE and RNA-seq are complementary technologies that can be used to improve incomplete gene models. We also found systematic bias in the second-and third-generation platforms, which is likely due to steps such as linker ligation, cleavage by restriction enzymes, and PCR amplification. This study provides a perspective on the performance of these platforms, which will be a baseline in the design of further experiments to tackle complex transcriptomes uncovered in a wide range of cell types
Association between brain imaging biomarkers and continuous glucose monitoring-derived glycemic control indices in Japanese patients with type 2 diabetes mellitus
Introduction Although type 2 diabetes mellitus (T2DM) is associated with alterations in brain structure, the relationship between glycemic control indices and brain imaging markers remains unclear. This study aimed to investigate the association between continuous glucose monitoring (CGM)-derived glycemic control indices and brain imaging biomarkers assessed by MRI.Research design and methods This cross-sectional study included 150 patients with T2DM. The severity of cerebral white matter lesions (WMLs) was assessed using MRI for deep and subcortical white matter and periventricular hyperintensities. The degree of medial temporal lobe atrophy (MTA) was assessed using voxel-based morphometry. Each participant wore a retrospective CGM for 14 consecutive days, and glycemic control indices, such as time in range (TIR) and glycemia risk index (GRI), were calculated.Results The proportion of patients with severe WMLs showed a decreasing trend with increasing TIR (P for trend=0.006). The proportion of patients with severe WMLs showed an increasing trend with worsening GRI (P for trend=0.011). In contrast, no significant association was observed between the degree of MTA and CGM-derived glycemic control indices, including TIR (P for trend=0.325) and GRI (P for trend=0.447).Conclusions The findings of this study indicate that the severity of WMLs is associated with TIR and GRI, which are indices of the quality of glycemic control.Trial registration number UMIN000032143