49 research outputs found

    Preliminary studies of photolysis and TiO2-montomorillonite-immobilised photocatalysis processes for the degradation of organic pollutants in water treatment

    Get PDF
    Organic compounds are the most diverse group of contaminants. The largest anthropogenic source of these contaminants in water is municipal and industrial wastewater. One of the indicators of surface water pollution is biological oxygen demand (BOD). Purifying water from organic micropollutants is a serious challenge and requires the development of newer and more effective methods. The removal of such contaminants is most effective only in advanced oxidation processes (AOP), which include UV photolysis and photocatalysis. The presented results are from preliminary research to evaluate the effectiveness of water treatment by ultraviolet (UV) photolysis and photocatalysis. Treatment efficiency was evaluated on the basis of changes in the BOD index before and after the advanced oxidation process of raw water. The values of the BOD5 index determined in accordance with PN-EN 25813:1997. The exposure time of the samples was a maximum of 60 minutes. The tested material was water samples taken from the Rudawa River, which is one of the drinking water sources for Krakow. The initial BOD5 value (expressed as concentration of O2) for all samples was about 8 mg/L but it has decreased to over 2 mg/L due to AOP processes. This means that after an hour, more than 75% of organic compounds present in the raw water were removed. For photocatalysis (TiO2-MMT), the exposure time of the samples was a maximum of 35 minutes. Water samples taken from the Rudawa River were also used as test material. The initial BOD5 value for all samples was about 9 mg/L but it has decreased to about 4 mg/L due to the photocatalysis process. This means that after 35 minutes, 55% of the organic compounds present in the raw water were removed

    BPA – an endocrine disrupting compound in water used for drinking purposes,a snapshot from South Poland

    Get PDF
    Bisphenol A (BPA) is a chemical produced in large quantities for use primarily in the production of polycarbonate plastics and epoxy resins. As an endocrine-disrupting compound, it has been included in the list of substances requiring special supervision as a very high-risk substance due to its toxic influence on reproduction. BPA with a reference value of 0.01 μg/L was included in the Drinking Water Directive revision (DWD 2018). This paper presents the results of preliminary studies aimed at identifying the occurrence of BPA in different types of water, i.a. groundwater captured with house wells or flowing wells in a selected location in southern Po-land. These waters are commonly used as a source of water intended for human consumption and their quality is not regularly controlled. Additional tests were carried out for surface water, as well as water from springs used for drinking purposes. The authors also analysed tap water from various sources, i.e. surface and groundwater, as the final product of the drinking water production cycle. The results indicate the presence of BPA in water and the necessity of a detailed study on the risk of the BPA occurring in groundwater, especially in domestic wells

    Occurrence of pharmaceutical residues, personal care products, lifestyle chemicals, illicit drugs and metabolites in wastewater and receiving surface waters of Krakow agglomeration in South Poland

    Get PDF
    This is the first study of broad range of chemical classes CECs conducted in the upper Wisla river catchment including the biggest WWTPs in this region and surface waters. The list of compounds is extensive and the paper provides, for the first time, better understanding of environmental burden from PCPCs in Poland. Cumulative contribution of hypertension pharmaceuticals, nonsteroidal anti-inflammatory drugs (NSAIDs) and lifestyle chemicals was 89% and 95% in wastewater influent, and 75% in wastewater effluent at both WWTPs. Significant removal efficiencies, exceeding 90%, were found for parabens, UV filters, NSAIDs, steroid estrogens, plasticizers, antibacterials/antibiotics, stimulants and metabolites and lifestyle chemicals. The comparison of the average mass loads of CECs between the influent and effluent, has shown that 27% and 29% of all detected CECs were removed by less than 50%. An increase of concentrations of CECs in the effluent was observed for 18% and 20% of all detected CECs in Kujawy and Plaszow WWTPs, respectively. Negative mass balances of fexofenadine, venlafaxine, o-desmethyltramadol, ketamine and temazepam were noted within WWTPs, which are a result of dissolution of persistent contaminants accumulated in aggregates and/or back-transformation or de-conjugation of metabolites into parent compounds. 44 CECs were detected in surface waters located upstream and downstream of the WWTPs. The concentrations of compounds were largely dependent on the dilution factor of WWTP discharge. The risk quotation (RQ) values for compounds present in surface waters were calculated in relation to their potential for bioaccumulation. Among compounds with high potential for bioaccumulation, with log KOW ≥ 4.5, diclofenac, atorvastatin and triclosan were found to be of high risk. Many CECs with high, moderate or even low environmental impact have shown high potential for bioaccumulation and should be considered as priority at the same risk level. Moreover, possible synergistic action is still of concern

    Seasonal Variability of PM10 Chemical Composition Including 1,3,5-triphenylbenzene, Marker of Plastic Combustion and Toxicity in Wadowice, South Poland

    Get PDF
    ABSTRACT The objective of this research was to evaluate the seasonal variation of the chemical composition of PM10 including polycyclic aromatic hydrocarbons (PAHs) and 1,3,5-triphenylbenzene (135TPB), which is a well known marker of plastic combustion. The presented work is a part of the project concerning assessment of air quality of small cities around Krakow agglomeration. Monitoring campaign was conducted between February and October 2017 in Wadowice, a small city in Krakow agglomeration, South Poland. To widen the knowledge of Krakow's agglomeration air quality, other aerosol chemical components were analyzed. Ion chromatography (IC) was used for analysis of cations and anions, while gas chromatography-mass spectrometry (GC-MS) was used for PAHs. Samples were also analyzed for OC/EC (organic/elemental carbon) by thermal-optical analysis with a Sunset Laboratory carbon analyzer, Sunset Inc. The co-combustion of plastic in addition to conventional fuels and the respective impact on air quality is evaluated via the concentration of the marker compound 135TPB. Co-combustion of plastics with fuels resulted in a higher abundance of fluorene and most of 4–6 ring PAHs, in agreement with recent literature. Authors proved that other sources besides plastic burning, including road transport, residential heating, residential combustion, industrial emissions, affect the air quality in South Poland. The modeling tool Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT), developed by NOAA's Air Resources Laboratory, was used to define the possible areas outside Wadowice contributing to urban air pollution

    European aerosol phenomenology - 8 : Harmonised source apportionment of organic aerosol using 22 Year-long ACSM/AMS datasets

    Get PDF
    Organic aerosol (OA) is a key component of total submicron particulate matter (PM1), and comprehensive knowledge of OA sources across Europe is crucial to mitigate PM1 levels. Europe has a well-established air quality research infrastructure from which yearlong datasets using 21 aerosol chemical speciation monitors (ACSMs) and 1 aerosol mass spectrometer (AMS) were gathered during 2013-2019. It includes 9 non-urban and 13 urban sites. This study developed a state-of-the-art source apportionment protocol to analyse long-term OA mass spectrum data by applying the most advanced source apportionment strategies (i.e., rolling PMF, ME-2, and bootstrap). This harmonised protocol was followed strictly for all 22 datasets, making the source apportionment results more comparable. In addition, it enables quantification of the most common OA components such as hydrocarbon-like OA (HOA), biomass burning OA (BBOA), cooking-like OA (COA), more oxidised-oxygenated OA (MO-OOA), and less oxidised-oxygenated OA (LO-OOA). Other components such as coal combustion OA (CCOA), solid fuel OA (SFOA: mainly mixture of coal and peat combustion), cigarette smoke OA (CSOA), sea salt (mostly inorganic but part of the OA mass spectrum), coffee OA, and ship industry OA could also be separated at a few specific sites. Oxygenated OA (OOA) components make up most of the submicron OA mass (average = 71.1%, range from 43.7 to 100%). Solid fuel combustion-related OA components (i.e., BBOA, CCOA, and SFOA) are still considerable with in total 16.0% yearly contribution to the OA, yet mainly during winter months (21.4%). Overall, this comprehensive protocol works effectively across all sites governed by different sources and generates robust and consistent source apportionment results. Our work presents a comprehensive overview of OA sources in Europe with a unique combination of high time resolution (30-240 min) and long-term data coverage (9-36 months), providing essential information to improve/validate air quality, health impact, and climate models.Peer reviewe

    Preliminary studies of content of unburned carbon in fly ash from coal-fired fluidized bed combustion

    No full text
    Tyt. z nagł.Bibliografia s. 94-96.Dostępny również w formie drukowanej.ABSTRACT: The application of "gradual roasting" test for the measurements of unburned carbon content in fluidized bed combustion (FBC) fly ashes was described. In "gradual roasting" method sample is heating in muffle furnace in three stages. Unburned carbon content in fly ash was determined by using thermogravimetry analysis (TGA-DTA). Thermogravimetric method was applied to assess of "gradual roasting" test. The error S% due to the presence of interferences in matrix of fly ashes from fluidized bed combustion was determined. Correlation between "gradual roasting" test and thermogravimetry analysis of the unburned carbon content of FBC fly ash was discussed. KEYWORDS: carbon analysis in coal fly ash, unburned carbon, fluidized bed combustion. STRESZCZENIE: Celem artykułu była ocena możliwości zastosowania metody stopniowanego prażenia do oznaczania zawartości niespalonego węgla w popiołach fluidalnych. Opracowana metoda polega na prażeniu próbki popiołu w piecu laboratoryjnym w trzech etapach. Metodę termograwimetryczną i różnicową analizę termiczną zastosowano dla oceny wyników otrzymanych metodą stopniowanego prażenia. Metoda krzywych DTA-TG dostarcza informacji dotyczących przemian związanych ze zmianą masy badanej substancji (ubytek lub przyrost) oraz w jakich zakresach temperatur mają miejsce te zmiany. Dlatego metoda ta posłużyła do wyznaczenia charakterystycznych temperatur utleniania węgla i rozkładu węglanów, a także temperatury odparowania całkowitego wody z próbki popiołu. Obecność w matrycy popiołu z palenisk fluidalnych interferentów powoduje, że wyniki otrzymane przy zastosowaniu standardowej metody oznaczania części palnych są zawyżone i obciążone systematycznym błędem S%. SŁOWA KLUCZOWE: spalanie fluidalne, analiza niespalonego węgla w popiele, niespalony węgiel

    Sorption of pharmaceuticals residues from water to char (scrap tires) impregnated with amines

    No full text
    The study investigated the application of char activated with CO2 and impregnated with amines solutions for removal of selected xenobiotics from aqueous solutions. The chars produced from the pyrolysis of waste tires. The solutions of monoethanolamine (MEA), diethanolamine (DEA) and polyethylenimine (PEI) were used for impregnation of char. The sorption capacity of char impregnated with amines depended on amines chemical properties. The adsorptive removal of mixture of pharmaceuticals residues by modified materials was assessed. BET surface area of materials varied from 36 m2 g−1 to 128 m2 g−1. The highest removal efficiencies up to 99 % were observed for char impregnated with PEI

    Sorption of pharmaceuticals residues from water to char (scrap tires) impregnated with amines

    No full text
    The study investigated the application of char activated with CO2 and impregnated with amines solutions for removal of selected xenobiotics from aqueous solutions. The chars produced from the pyrolysis of waste tires. The solutions of monoethanolamine (MEA), diethanolamine (DEA) and polyethylenimine (PEI) were used for impregnation of char. The sorption capacity of char impregnated with amines depended on amines chemical properties. The adsorptive removal of mixture of pharmaceuticals residues by modified materials was assessed. BET surface area of materials varied from 36 m2 g−1 to 128 m2 g−1. The highest removal efficiencies up to 99 % were observed for char impregnated with PEI
    corecore