633 research outputs found

    Preliminary Survey of the Terrestrial Isopods (Isopoda), Millipedes (Diplopoda), Harvestmen (Opiliones), and Spiders (Araneae) of Toft Point Natural Area, Door County, Wisconsin

    Get PDF
    Toft Point Natural Area is a National Natural Landmark owned and managed by the University of Wisconsin – Green Bay and located on the Lake Michigan shore of Wisconsin’s Door Peninsula. With twelve biotic communities on 700 acres, Toft Point contains considerable biological diversity. We conducted a preliminary survey of the arachnids (spiders and harvestmen, excluding mites and pseudoscorpions), millipedes (diplopods), and terrestrial isopods (Isopoda: Oniscoidea). Sampling occurred on three dates in 2001 using leaf litter collection with Berlese extraction and a timed collection by hand that incorporated a variety of techniques. Specimens from a 1992 survey and assorted collecting events were also used to compile a species list. The list includes five isopods, four millipedes, six harvestmen, and 113 spiders, including 16 new state records (two millipedes and 14 spiders) and 90 new Door County records. Litter collection and sampling in wetland habitats were both especially productive

    Preliminary Survey of the Terrestrial Isopods (Isopoda), Millipedes (Diplopoda), Harvestmen (Opiliones), and Spiders (Araneae) of Toft Point Natural Area, Door County, Wisconsin

    Get PDF
    Toft Point Natural Area is a National Natural Landmark owned and managed by the University of Wisconsin – Green Bay and located on the Lake Michigan shore of Wisconsin’s Door Peninsula. With twelve biotic communities on 700 acres, Toft Point contains considerable biological diversity. We conducted a preliminary survey of the arachnids (spiders and harvestmen, excluding mites and pseudoscorpions), millipedes (diplopods), and terrestrial isopods (Isopoda: Oniscoidea). Sampling occurred on three dates in 2001 using leaf litter collection with Berlese extraction and a timed collection by hand that incorporated a variety of techniques. Specimens from a 1992 survey and assorted collecting events were also used to compile a species list. The list includes five isopods, four millipedes, six harvestmen, and 113 spiders, including 16 new state records (two millipedes and 14 spiders) and 90 new Door County records. Litter collection and sampling in wetland habitats were both especially productive

    Spiders of the UW-Milwaukee Field Station

    Get PDF
    A checklist of 100 species from 16 families is presented in this preliminary report of spiders at the UWM Field Station. Listed with the species are the months and habitats in which they were collected

    Development of an in vitro three dimensional loading-measurement system for long bone fixation under multiple loading conditions: a technical description

    Get PDF
    The purpose of this investigation was to design and verify the capabilities of an in vitro loading-measurement system that mimics in vivo unconstrained three dimensional (3D) relative motion between long bone ends, applies uniform load components over the entire length of a test specimen, and measures 3D relative motion between test segment ends to directly determine test segment construct stiffness free of errors due to potting-fixture-test machine finite stiffness

    Winter Rye Cover Crop Biomass Production, Degradation, and Nitrogen Recycling

    Get PDF
    Winter rye (Secale cereale L.) cover crop (RCC) use in corn (Zea mays L.) and soybean [Glycine max. (L.) Merr.] production can alter N dynamics compared to no RCC. The objectives of this study were to evaluate RCC biomass production (BP) and subsequent RCC degradation (BD) and N recycling in a no-till corn–soybean (CS) rotation. Aboveground RCC was sampled at spring termination for biomass dry matter (DM), C, and N. To evaluate BD and remaining C and N, RCC biomass was put into nylon mesh bags, placed on the soil surface, and collected multiple times over 105 d. Treatments included rye cover crop following soybean (RCC-FS) and corn (RCC-FC), and prior-year N applied to corn. Overall, the RCC BP and N was low due to low soil profile NO3–N. Across sites and years, the greatest BP was with RCC-FC that received 225 kg N ha–1 (1280 kg DM ha–1), with similar N uptake as with RCC-FS (27 kg N ha–1). The RCC biomass and N remaining decreased over time following an exponential decay. An average 62% biomass with RCC-FS and RCC-FC degraded after 105 d; however, N recycled was greater with RCC-FS than RCC-FC [22 (80%) vs. 14 (64%) kg N ha–1, respectively], and was influenced by the RCC C/N ratio. The RCC did not recycle an agronomically meaningful amount of N, which limited N that could potentially be supplied to corn. Rye cover crops can conserve soil N, and with improved management and growth, recycling of crop-available N should increase

    The Palomar Transient Factory Orion Project: Eclipsing Binaries and Young Stellar Objects

    Get PDF
    The Palomar Transient Factory (PTF) Orion project is an experiment within the broader PTF survey, a systematic automated exploration of the sky for optical transients. Taking advantage of the wide field of view available using the PTF camera at the Palomar 48" telescope, 40 nights were dedicated in December 2009-January 2010 to perform continuous high-cadence differential photometry on a single field containing the young (7-10Myr) 25 Ori association. The primary motivation for the project is to search for planets around young stars in this region. The unique data set also provides for much ancillary science. In this first paper we describe the survey and data reduction pipeline, and present initial results from an inspection of the most clearly varying stars relating to two of the ancillary science objectives: detection of eclipsing binaries and young stellar objects. We find 82 new eclipsing binary systems, 9 of which we are candidate 25 Ori- or Orion OB1a-association members. Of these, 2 are potential young W UMa type systems. We report on the possible low-mass (M-dwarf primary) eclipsing systems in the sample, which include 6 of the candidate young systems. 45 of the binary systems are close (mainly contact) systems; one shows an orbital period among the shortest known for W UMa binaries, at 0.2156509 \pm 0.0000071d, with flat-bottomed primary eclipses, and a derived distance consistent with membership in the general Orion association. One of the candidate young systems presents an unusual light curve, perhaps representing a semi-detached binary system with an inflated low-mass primary or a star with a warped disk, and may represent an additional young Orion member. Finally, we identify 14 probable new classical T-Tauri stars in our data, along with one previously known (CVSO 35) and one previously reported as a candidate weak-line T-Tauri star (SDSS J052700.12+010136.8).Comment: 66 pages, 27 figures, accepted to Astronomical Journal. Minor typographical corrections and update to author affiliation

    The PTF Orion Project: a Possible Planet Transiting a T-Tauri Star

    Get PDF
    We report observations of a possible young transiting planet orbiting a previously known weak-lined T-Tauri star in the 7-10 Myr old Orion-OB1a/25-Ori region. The candidate was found as part of the Palomar Transient Factory (PTF) Orion project. It has a photometric transit period of 0.448413 +- 0.000040 days, and appears in both 2009 and 2010 PTF data. Follow-up low-precision radial velocity (RV) observations and adaptive optics imaging suggest that the star is not an eclipsing binary, and that it is unlikely that a background source is blended with the target and mimicking the observed transit. RV observations with the Hobby-Eberly and Keck telescopes yield an RV that has the same period as the photometric event, but is offset in phase from the transit center by approximately -0.22 periods. The amplitude (half range) of the RV variations is 2.4 km/s and is comparable with the expected RV amplitude that stellar spots could induce. The RV curve is likely dominated by stellar spot modulation and provides an upper limit to the projected companion mass of M_p sin i_orb < 4.8 +- 1.2 M_Jup; when combined with the orbital inclination, i orb, of the candidate planet from modeling of the transit light curve, we find an upper limit on the mass of the planetary candidate of M_p < 5.5 +- 1.4 M_Jup. This limit implies that the planet is orbiting close to, if not inside, its Roche limiting orbital radius, so that it may be undergoing active mass loss and evaporation.Comment: Corrected typos, minor clarifications; minor updates/corrections to affiliations and bibliography. 35 pages, 10 figures, 3 tables. Accepted to Ap

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure
    • …
    corecore