178 research outputs found

    Intracerebral Infusion of Antisense Oligonucleotides Into Prion-infected Mice

    Get PDF
    Mice deficient for the cellular prion protein (PrPC) do not develop prion disease; accordingly, gene-based strategies to diminish PrPC expression are of interest. We synthesized a series of chemically modified antisense oligonucleotides (ASOs) targeted against mouse Prnp messenger RNA (mRNA) and identified those that were most effective in decreasing PrPC expression. Those ASOs were also evaluated in scrapie-infected cultured cells (ScN2a) for their efficacy in diminishing the levels of the disease-causing prion protein (PrPSc). When the optimal ASO was infused intracerebrally into FVB mice over a 14-day period beginning 1 day after infection with the Rocky Mountain Laboratory (RML) strain of mouse prions, a prolongation of the incubation period of almost 2 months was observed. Whether ASOs can be used to develop an effective therapy for patients dying of Creutzfeldt–Jakob disease remains to be established

    Neuroprotective Effects of Calmodulin Peptide 76-121aa: Disruption of Calmodulin Binding to Mutant Huntingtin

    Get PDF
    Huntington's disease (HD) is a neurodegenerative disease caused by mutant huntingtin protein containing an expanded polyglutamine tract, which may cause abnormal protein–protein interactions such as increased association with calmodulin (CaM). We previously demonstrated in HEK293 cells that a peptide containing amino acids 76-121 of CaM (CaM-peptide) interrupted the interaction between CaM and mutant huntingtin, reduced mutant huntingtin-induced cytotoxicity and reduced transglutaminase (TG)-modified mutant huntingtin. We now report that adeno-associated virus (AAV)-mediated expression of CaM-peptide in differentiated neuroblastoma SH-SY5Y cells, stably expressing an N-terminal fragment of huntingtin containing 148 glutamine repeats, significantly decreases the amount of TG-modified huntingtin and attenuates cytotoxicity. Importantly, the effect of the CaM-peptide shows selectivity, such that total TG activity is not significantly altered by expression of CaM-peptide nor is the activity of another CaM-dependent enzyme, CaM kinase II. In vitro, recombinant exon 1 of huntingtin with 44 glutamines (htt-exon1-44Q) binds to CaM-agarose; the addition of 10 µM of CaM-peptide significantly decreases the interaction of htt-exon1-44Q and CaM but not the binding between CaM and calcineurin, another CaM-binding protein. These data support the hypothesis that CaM regulates TG-catalyzed modifications of mutant huntingtin and that specific and selective disruption of the CaM-huntingtin interaction is potentially a new target for therapeutic intervention in HD

    Biochemical and biophysical characterization of cell-free synthesized Rift Valley fever virus nucleoprotein capsids enables in vitro screening to identify novel antivirals

    Get PDF
    Cell fractionation indicates that the compounds access the nucleus. The most potent compounds were exposed to HEK cells at a concentration of 1 ΟM for 24 h, after which the nucleus was separated from the cytoplasm. The concentration of these two blue compounds could be observed by the relative higher intensity in the nucleus compared to that in the cytoplasm. (PDF 3721 kb

    Transglutaminase activation in neurodegenerative diseases

    Get PDF
    The following review examines the role of calcium in promoting the in vitro and in vivo activation of transglutaminases in neurodegenerative disorders. Diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease exhibit increased transglutaminase activity and rises in intracellular calcium concentrations, which may be related. The aberrant activation of transglutaminase by calcium is thought to give rise to a variety of pathological moieties in these diseases, and the inhibition has been shown to have therapeutic benefit in animal and cellular models of neurodegeneration. Given the potential clinical relevance of transglutaminase inhibitors, we have also reviewed the recent development of such compounds

    Identification of Potential Therapeutic Drugs for Huntington's Disease using Caenorhabditis elegans

    Get PDF
    The prolonged time course of Huntington's disease (HD) neurodegeneration increases both the time and cost of testing potential therapeutic compounds in mammalian models. An alternative is to initially assess the efficacy of compounds in invertebrate models, reducing time of testing from months to days.We screened candidate therapeutic compounds that were identified previously in cell culture/animal studies in a C. elegans HD model and found that two FDA approved drugs, lithium chloride and mithramycin, independently and in combination suppressed HD neurotoxicity. Aging is a critical contributor to late onset neurodegenerative diseases. Using a genetic strategy and a novel assay, we demonstrate that lithium chloride and mithramycin remain neuroprotective independent of activity of the forkhead transcription factor DAF-16, which mediates the effects of the insulin-like signaling pathway on aging.These results suggest that pathways involved in polyglutamine-induced degeneration are distinct from specific aging pathways. The assays presented here will be useful for rapid and inexpensive testing of other potential HD drugs and elucidating pathways of drug action. Additionally, the neuroprotection conferred by lithium chloride and mithramycin suggests that these drugs may be useful for polyglutamine disease therapy

    Efficacy of Fumaric Acid Esters in the R6/2 and YAC128 Models of Huntington's Disease

    Get PDF
    Huntington's disease (HD) is an autosomal dominantly inherited progressive neurodegenerative disease. The exact sequel of events finally resulting in neurodegeneration is only partially understood and there is no established protective treatment so far. Some lines of evidence speak for the contribution of oxidative stress to neuronal tissue damage. The fumaric acid ester dimethylfumarate (DMF) is a new disease modifying therapy currently in phase III studies for relapsing-remitting multiple sclerosis. DMF potentially exerts neuroprotective effects via induction of the transcription factor “nuclear factor E2-related factor 2” (Nrf2) and detoxification pathways. Thus, we investigated here the therapeutic efficacy of DMF in R6/2 and YAC128 HD transgenic mice which mimic many aspects of HD and are characterized by an enhanced generation of free radicals in neurons. Treatment with DMF significantly prevented weight loss in R6/2 mice between postnatal days 80–90. At the same time, DMF treatment led to an attenuated motor impairment as measured by the clasping score. Average survival in the DMF group was 100.5 days vs. 94.0 days in the placebo group. In the histological analysis on day 80, DMF treatment resulted in a significant preservation of morphologically intact neurons in the striatum as well as in the motor cortex. DMF treatment resulted in an increased Nrf2 immunoreactivity in neuronal subpopulations, but not in astrocytes. These beneficial effects were corroborated in YAC128 mice which, after one year of DMF treatment, also displayed reduced dyskinesia as well as a preservation of neurons. In conclusion, DMF may exert beneficial effects in mouse models of HD. Given its excellent side effect profile, further studies with DMF as new therapeutic approach in HD and other neurodegenerative diseases are warranted

    Suppression of protein aggregation by chaperone modification of high molecular weight complexes

    Get PDF
    Protein misfolding and aggregation are associated with many neurodegenerative diseases, including Huntington's disease. The cellular machinery for maintaining proteostasis includes molecular chaperones that facilitate protein folding and reduce proteotoxicity. Increasing the protein folding capacity of cells through manipulation of DNAJ chaperones has been shown to suppress aggregation and ameliorate polyglutamine toxicity in cells and flies. However, to date these promising findings have not been translated to mammalian models of disease. To address this issue, we developed transgenic mice that over-express the neuronal chaperone HSJ1a (DNAJB2a) and crossed them with the R6/2 mouse model of Huntington's disease. Over-expression of HSJ1a significantly reduced mutant huntingtin aggregation and enhanced solubility. Surprisingly, this was mediated through specific association with K63 ubiquitylated, detergent insoluble, higher order mutant huntingtin assemblies that decreased their ability to nucleate further aggregation. This was dependent on HSJ1a client binding ability, ubiquitin interaction and functional co-operation with HSP70. Importantly, these changes in mutant huntingtin solubility and aggregation led to improved neurological performance in R6/2 mice. These data reveal that prevention of further aggregation of detergent insoluble mutant huntingtin is an additional level of quality control for late stage chaperone-mediated neuroprotection. Furthermore, our findings represent an important proof of principle that DNAJ manipulation is a valid therapeutic approach for intervention in Huntington's disease
    corecore