
BRAIN
A JOURNAL OF NEUROLOGY

Suppression of protein aggregation by chaperone
modification of high molecular weight complexes
John Labbadia,1,* Sergey S. Novoselov,2,* John S. Bett,2 Andreas Weiss,3 Paolo Paganetti,3,4

Gillian P. Bates1 and Michael E. Cheetham2

1 Department of Medical and Molecular Genetics, King’s College London, London SE1 9RT, UK

2 Ocular Biology and Therapeutics (ORBIT), UCL Institute of Ophthalmology, London EC1V 9EL, UK

3 Novartis Institutes for BioMedical Research, Neuroscience Discovery, PO Box, CH-4002 Basel, Switzerland

4 AC Immune SA, EPFL PSE-Building B, CH-1015 Lausanne, Switzerland

*These authors contributed equally to this work.

Correspondence to: Dr Michael E. Cheetham,

Ocular Biology and Therapeutics (ORBIT),

UCL Institute of Ophthalmology,

11-43 Bath Street,

London EC1V 9EL, UK

E-mail: michael.cheetham@ucl.ac.uk

Correspondence may also be addressed to: Dr. Gillian Bates, Department of Medical and Molecular Genetics, King’s College London, 8th Floor Tower

Wing, Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK. E-mail: gillian.bates@kcl.ac.uk

Protein misfolding and aggregation are associated with many neurodegenerative diseases, including Huntington’s disease.

The cellular machinery for maintaining proteostasis includes molecular chaperones that facilitate protein folding and reduce

proteotoxicity. Increasing the protein folding capacity of cells through manipulation of DNAJ chaperones has been shown to

suppress aggregation and ameliorate polyglutamine toxicity in cells and flies. However, to date these promising findings have

not been translated to mammalian models of disease. To address this issue, we developed transgenic mice that over-express the

neuronal chaperone HSJ1a (DNAJB2a) and crossed them with the R6/2 mouse model of Huntington’s disease. Over-expression

of HSJ1a significantly reduced mutant huntingtin aggregation and enhanced solubility. Surprisingly, this was mediated through

specific association with K63 ubiquitylated, detergent insoluble, higher order mutant huntingtin assemblies that decreased their

ability to nucleate further aggregation. This was dependent on HSJ1a client binding ability, ubiquitin interaction and functional

co-operation with HSP70. Importantly, these changes in mutant huntingtin solubility and aggregation led to improved neuro-

logical performance in R6/2 mice. These data reveal that prevention of further aggregation of detergent insoluble mutant

huntingtin is an additional level of quality control for late stage chaperone-mediated neuroprotection. Furthermore, our findings

represent an important proof of principle that DNAJ manipulation is a valid therapeutic approach for intervention in

Huntington’s disease.
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Introduction
The synthesis and maintenance of correctly folded proteins are

essential processes within all living cells. The accumulation of mis-

folded or aggregated proteins can lead to cell death or dysfunction

and as such, protein homeostasis (proteostasis) must be tightly

regulated (Balch et al., 2008). Members of the HSPA (HSP70)

and DNAJ (HSP40) chaperone families are major mediators of

protein quality control (Kampinga and Craig, 2010). HSP70 recog-

nizes misfolded proteins and promotes their refolding or degrad-

ation in an ATP-dependent manner, while HSP40 proteins

enhance this process by delivering clients and stimulating HSP70

ATPase activity through their conserved J-domain (Kampinga and

Craig, 2010). As such, HSP70 and HSP40 chaperones are powerful

modulators of proteome integrity and cell viability.

Despite the elegant pathways in place to prevent protein mis-

folding and aggregation, protein folding diseases present a major

health burden in an ageing population (Balch et al., 2008).

Huntington’s disease is one of nine inherited polyglutamine dis-

eases caused by protein misfolding and characterized by the for-

mation of detergent insoluble protein aggregates that coalesce

into nuclear and cytoplasmic inclusions (Williams and Paulson,

2008). At the molecular level, Huntington’s disease is caused by

a CAG expansion in exon 1 of the huntingtin gene (The

Huntington’s disease collaborative research group, 1993). This

leads to misfolding of the encoded huntingtin protein, which re-

sults in a toxic gain-of-function (Landles and Bates, 2004).

Symptoms typically manifest around mid-adulthood and include

psychiatric disturbances, weight loss and a progressive decline in

motor and cognitive function. Disease progression typically occurs

over 20 years before death with no disease-modifying treatment

available (Novak and Tabrizi, 2010).

Given that chaperones are powerful modifiers of proteostasis,

upregulation of HSP70 and HSP40 chaperones to enhance the

refolding capacity, or quality control, of cells is an attractive thera-

peutic target for Huntington’s disease and other polyglutamine

diseases. Indeed, over-expression of HSP70 or HSP40 chaperones

in cells and flies can potently reduce polyglutamine aggregation

and toxicity (Cummings et al., 1998; Warrick et al., 1999; Chan

et al., 2000). Interestingly, over-expression of HSP40 chaperones

has been reported to suppress polyglutamine aggregation more

potently than HSP70 chaperones, with members of a DNAJB sub-

family of HSP40 molecules proving to be the most powerful modi-

fiers of polyglutamine aggregation in cell culture (Hageman et al.,

2010).

HSJ1 is a DNAJB chaperone that is predominantly expressed in

neurons (Cheetham et al., 1992) and can suppress polyglutamine

aggregation and toxicity (Westhoff et al., 2005; Borrell-Pages

et al., 2006; Howarth et al., 2007; Hageman et al., 2010).

Alternative splicing produces two isoforms, HSJ1a and HSJ1b,

which contain two ubiquitin-interacting motifs (UIMs) in addition

to an N-terminal J-domain (Chapple et al., 2004). Both HSJ1 iso-

forms promote the sorting of ubiquitylated clients to the prote-

asome, thereby enhancing the degradation of misfolded or

damaged proteins (Westhoff et al., 2005). HSJ1a and HSJ1b

differ at the C-terminus and only HSJ1a is able to modify

polyglutamine aggregation in cells, predominantly due to the pre-

nylation-mediated association of HSJ1b with the cytosolic face of

the endoplasmic reticulum (Westhoff et al., 2005; Borrell-Pages

et al., 2006; Hageman et al., 2010).

Disappointingly, the over-expression of chaperones has shown

limited success in ameliorating polyglutamine disease in mice

(Cummings et al., 2001; Hansson et al., 2003, Hay et al., 2004;

Helmlinger et al., 2004). However, the ability of HSP40 chaper-

ones to modify polyglutamine aggregation and toxicity in mouse

brain is currently unknown. In this study, we assessed the effects

of HSJ1a over-expression on disease progression in the R6/2

mouse model of Huntington’s disease. R6/2 mice express exon

1 of human huntingtin with � 200 CAG repeats and recapitulate

many molecular and phenotypic features of Huntington’s disease

over an accelerated time course (Mangiarini et al., 1996; Davies

et al., 1997). Importantly, we show that HSJ1a is able to act at the

level of high molecular weight mutant huntingtin complexes to

reduce aggregate load and improve neurological performance

through a novel chaperone mechanism. This was reliant on ubi-

quitin chain recognition and client protein binding ability but, sur-

prisingly, was independent of proteasomal targeting. We conclude

that our findings are an encouraging proof of principle that the

manipulation of DNAJ proteins can improve disease phenotype in

the context of the mammalian brain. Furthermore, this suggests

that altering levels of DNAJ chaperones pharmacologically could

be a promising therapeutic avenue for treatment of Huntington’s

disease and other polyglutamine diseases.

Materials and methods

Production of human HSJ1a
transgenic mice
Human HSJ1a transgenic mice were created by pronuclear injection of

B6/CBA F1 blastocysts with the human HSJ1a complementary DNA

open reading frame (Chapple and Cheetham, 2003) driven by the

bovine prion protein promoter (Lemaire-Vieille et al., 2000). Positive

founders were identified by polymerase chain reaction and crossed to

C57Bl/6 animals. The human HSJ1a line 52a was derived and human

HSJ1a expression confirmed, then backcrossed onto a C57Bl/6 back-

ground for use in this study.

Mouse maintenance, breeding,
genotyping and CAG repeat sizing
All mouse experiments were performed under project and personal

licenses approved and issued by the Home Office. Hemizygous R6/2

mice (Mangiarini et al., 1996) were bred by backcrossing R6/2 males

to (CBA x C57Bl/6) F1 females (B6CBAF1/OlaHsd, Harlan Olac).

Housing conditions and environmental enrichment were as previously

described (Hockly et al., 2003).

Behavioural assessment
Mouse behavioural assessment was performed as previously described

(Benn et al., 2009) with the specific exceptions that RotaRod and

activity assessments were conducted over 300 s and 30 min,
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respectively. The data were collected and analysed by repeated meas-

ures general linear model ANOVA with Greenhouse Geisser post hoc

analysis as described previously (Hockly et al., 2006).

Antibodies
The primary and secondary antibodies used in this study are summar-

ized in Supplementary Table 3. S830, HSJ1 (16321 and S653) and

huntingtin antibodies were generated as described (Ko et al., 2001;

Sathasivam et al., 2001; Chapple and Cheetham, 2003).

Cell culture, plasmids and transfection
Human neuroblastoma SK-N-SH cells were transfected with 1 mg/well

of pCMV-Tag3a-HSJ1a (wild-type, H31Q or UIM mutants) described

previously (Chapple and Cheetham, 2003; Westhoff et al., 2005) or

empty vector (Stratagene) using LipofectamineTM and Plus reagents

(Invitrogen) according to the manufacturer’s instructions. Cells were

lysed in HEPES (for immunoprecipitation) or AcTEVTM (for in vitro

aggregation) buffer 24 h post transfection, sonicated, cleared, ali-

quoted and frozen at �70�C until further use.

SDS-PAGE, western blotting and
immunodetection
Western blotting for chaperones, HSJ1a and mutant huntingtin was

performed as previously described using 20 mg of total protein in 1�

Laemmli loading buffer (Woodman et al., 2007).

Densitometry
Densitometry of western blots was performed using a BioRad GS-800

densitometer. Developed films were scanned and the average pixel

density for each band was measured. The average pixel density of

an area devoid of bands was subtracted from the values obtained

for bands of interest in order to normalize average pixel density

against background. Relative expression was determined by dividing

the normalized average pixel density of bands of interest by the aver-

age pixel density of �-tubulin or mouse HSJ1a as specified for each

experiment.

Seprion ligand enzyme-linked
immunosorbent assay
Sample preparation and Seprion ligand enzyme-linked immunosorbent

assay were performed as previously described (Sathasivam et al.,

2010).

Time-resolved Förster resonance
energy transfer
Sample preparation and mutant huntingtin time-resolved Förster res-

onance energy transfer were essentially performed as previously

described (Weiss et al., 2009).

Agarose gel electrophoresis for
resolving aggregates
Sample preparation and agarose gel electrophoresis for resolving ag-

gregates (AGERA) were conducted based on previously described

methods (Weiss et al., 2008).

TaqMan� real-time quantitative
polymerase chain reaction
RNA extraction, complementary DNA synthesis, Taqman real-time

quantitative polymerase chain reaction and �Ct analysis were per-

formed according to previous recommendations (Benn et al., 2008).

Immunoprecipitation,
co-immunoprecipitation and
sequential immunoprecipitation
One hundred microlitres of protein lysate was incubated with 25ml of

protein-G Dynabeads (Invitrogen) and antibody (Supplementary Table

3) for 1 h at room temperature on a rotating wheel. Precipitated ma-

terial was eluted from beads by heating for 3 min at 98�C in 30 ml of

4� sodium dodecyl sulphate sample buffer and subjected to sodium

dodecyl sulphate polyacrylamide gel electrophoresis and western blot-

ting. In the case of sequential immunoprecipitation, material isolated

after HSJ1 (S653) immunoprecipitation was eluted from beads with

1% sodium dodecyl sulphate. Samples were then diluted 10-fold

and used as inputs for immunoprecipitation with S830.

Exogenous immunoprecipitation and
HSJ1 competition assays
HSJ1 immunoprecipitation was performed using anti-HSJ1 (S653)

(Chapple and Cheetham, 2003) or anti-myc antibodies (Sigma) in

R6/2 brain lysate mixed with 1–5 mg of either affinity-purified HSJ1a

(wild-type or �UIM) or SK-N-SH cell lysate HSJ1a (myc-tagged

wild-type, H31Q or �UIM). For competition assays, denatured

ovalbumin or ubiquitin chains were preincubated for 30 min with pur-

ified or myc-tagged HSJ1a prior to the addition of R6/2 brain lysate

and antibody.

Immunohistochemistry and
immunofluorescence
Mouse brain sectioning, immunohistochemistry and immunofluores-

cence were performed as previously described (Moffitt et al., 2009;

Luthi-Carter et al., 2010). Quantification of inclusion area was per-

formed with Zeiss Axiovision software. Further details are provided in

the Supplementary material.

Seprion pull down, immuno-gold
labelling and transmission electron
microscopy
Sample preparation, Seprion ligand pull down and immuno-gold label-

ling were performed according to (Sathasivam et al., 2010).
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In vitro aggregation and filter trap
Reactions were essentially performed as previously described (Tam

et al., 2009). Typically, 3.0 mM of freshly purified gluathione-S

transferase-tagged huntingtin Q51 fragment (GST-HTT Q51) was

incubated with AcTEVTM protease (Invitrogen) in the presence of an

ATP regeneration system and different ratios of HSJ1a or albumin

(Sigma-Aldrich). Reactions were stopped by flash-freezing in liquid

nitrogen and material was then subjected to filter trap analysis using

0.22 mm cellulose acetate (Whatman). HTT Q51 was detected using

S-Protein horseradish peroxidase (Novagen) and signal was developed

using ECL PlusTM reagents (GE Healthcare). Results were quantified

using ImageJ software.

Purification of huntingtin seeds from
mouse brain and nucleation of
aggregation
Isolation of detergent insoluble material was performed similar to pre-

viously described method (Nekooki-Machida et al., 2009). For the

seeding experiment, 0.3 mM of GST-HTT Q51 was incubated with

AcTEVTM protease (Invitrogen) in the presence of 120 ng or 160 ng

of insoluble material isolated from wild-type, R6/2 or double trans-

genic mouse brains in the absence of the ATP regeneration system.

Reactions were stopped at 0, 2 or 5 h, then used in filter trap assay

and analysed as described above.

Brain-derived neurotrophic factor
enzyme-linked immunosorbent assay
BDNF Emax� Immunoassay System (Promega) was used to determine

total brain-derived neurotrophic factor (BDNF) protein levels in the

brain tissues of 4- and 15-week-old animals according to the manu-

facturer’s instructions with modifications described earlier (Szapacs

et al., 2004). Brain samples were region matched and run in

duplicates.

Statistical analysis
P-values were calculated by Student’s t-test in Microsoft Excel. Statistical

analysis of the mouse behavioural work was determined by general linear

model analysis of variance in SPSS. Full and additional methodological

information is available in the Supplementary material.

Results

Spatial and temporal expression of
human HSJ1a in transgenic mice
HSJ1a transgenic mice were produced that express human HSJ1a

under the control of the bovine prion protein promoter. Female

HSJ1a and male R6/2 mice were then crossed to generate double

transgenic mice. Given that CAG repeat number is intimately

coupled to aggregation and toxicity, we ensured that R6/2 and

double transgenic groups were well matched for repeat size

throughout (Supplementary Table 1). To determine the spatial

pattern of human HSJ1a expression, protein lysates from various

tissues were subjected to immunoblotting with an HSJ1a specific

antibody (16321). Human HSJ1a expression was mainly in the

CNS with highest levels of expression observed in brain tissue

(Fig. 1A). Of the brain tissues examined, cortex, striatum and

hippocampus all displayed significantly higher levels of human

HSJ1a than the cerebellum or brain stem (Fig. 1B and C).

Unexpectedly, human HSJ1a also exhibited differential temporal

expression with levels increasing �3-fold between 4- and

15-weeks of age (Fig. 1D and E). Expression of human HSJ1a

had no effect on levels of endogenous mouse HSJ1a (Fig. 1A, B

and D).

To ensure that mutant huntingtin exon 1 transgene messenger

RNA was not altered by human HSJ1a expression, TaqMan�

real-time quantitative polymerase chain reaction was performed

on 15 week cortex, striatum, hippocampus and cerebellum. No

significant difference in mutant huntingtin messenger RNA levels

were observed between R6/2 and double transgenic mice in any

of the brain regions tested (Supplementary Fig. 1A–D). In addition,

no significant difference was observed in the expression of heat

shock response (HSR), unfolded protein response (UPR), mito-

chondrial unfolded protein response or autophagy markers (Ron

and Walter, 2007; Akerfelt et al., 2010; Haynes and Ron, 2010;

Martinez-Vicente et al., 2010) in 15-week double transgenic mice

compared with R6/2 (Supplementary Fig. 2A–C). Taken together,

these data show that human HSJ1a expression in double trans-

genic mice is present in the CNS and increases with age without

altering the expression of mutant huntingtin, mouse HSJ1a or

major inducible components of the proteostasis machinery.

HSJ1a reduces aggregate load and
increases levels of soluble huntingtin
in a mouse model of Huntington’s
disease
The formation of protein aggregates is a hallmark of disease pro-

gression in Huntington’s disease and other polyglutamine disorders

(Williams and Paulson, 2008). To determine the molecular conse-

quences of human HSJ1a over-expression in R6/2 brain tissue, we

quantified levels of aggregated and soluble mutant huntingtin in

R6/2 and double transgenic mice using Seprion enzyme-linked

immunosorbent assay (Sathasivam et al., 2010) and time-resolved

Förster resonance energy transfer (Weiss et al., 2009) assays, re-

spectively. In keeping with previous studies, levels of aggregated

mutant huntingtin were found to increase with age with a recip-

rocal reduction in levels of soluble mutant huntingtin (Weiss et al.,

2009; Sathasivam et al., 2010). Seprion enzyme-linked immuno-

sorbent assay revealed that human HSJ1a expression significantly

reduced aggregate load in both the cortex (Fig. 2A) and striatum

(Supplementary Fig. 3) at 15 weeks of age. Furthermore,

time-resolved Förster resonance energy transfer demonstrated

that human HSJ1a expression also led to increased levels of soluble

mutant huntingtin in the cortices of double transgenic mice

(Fig. 2B). These findings were confirmed by immunoblotting and

densitometry (Fig. 2E and F). In contrast, no significant difference

was observed in levels of aggregated or soluble mutant huntingtin

in cerebellum at any age tested (Fig. 2C and D). This is most likely

due to the much lower levels of human HSJ1a in this brain region.
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 at U
C

L
 L

ibrary Services on M
arch 26, 2014

http://brain.oxfordjournals.org/
D

ow
nloaded from

 

http://brain.oxfordjournals.org/
http://brain.oxfordjournals.org/


Taken together, these data show that human HSJ1a expression

reduces aggregate load and increases levels of soluble mutant

huntingtin in R6/2 brain tissue.

HSJ1a reduces nuclear inclusion area
and aggregate size distribution in
R6/2 mice
A spectrum of mutant huntingtin oligomers are formed with dis-

ease progression in Huntington’s disease (Sathasivam et al., 2010).

In order to determine whether human HSJ1a reduced general ag-

gregate load or levels of a specific aggregate species, we coupled

agarose gel electrophoresis resolution of aggregates (Weiss et al.,

2008) with immunoblotting. AGERA western blots probed with an

antibody raised against mutant huntingtin (S830) revealed smears

of detergent insoluble high molecular weight species that

increased in both length and intensity with age in R6/2 mice. As

expected, wild-type mice had no detectable signal. Interestingly,

the high molecular weight smear observed in double transgenic

mice was found to be markedly shorter than that observed in

R6/2 mice at both 9- and 15 weeks of age, suggesting that

HSJ1a reduces the level of high order detergent insoluble aggre-

gates (Fig. 2G). Cytoplasmic and nuclear mutant huntingtin in-

clusions are formed with disease progression in the brains of

patients with Huntington’s disease and mouse models of

Huntington’s disease (Davies et al., 1997; DiFiglia et al., 1997).

As human HSJ1a was able to reduce levels of high molecular

weight aggregates, we reasoned that this might correspond to

an alteration in the size of nuclear inclusions. To investigate this,

mutant huntingtin immunohistochemistry was performed on 9-

and 15-week brain sections and both nuclear inclusion area and

incidence were determined using Zeiss Axiovision software. While

no inclusions of any kind were observed in wild-type and human

HSJ1a transgenic mice, R6/2 mice contained large numbers of

both cytoplasmic and nuclear inclusions throughout the cortex,

which increased in incidence and size between 9- and 15 weeks

of age (Fig. 3A and B). Quantification of nuclear inclusion

area revealed that nuclear inclusions were �40% smaller in

double transgenic mice compared with R6/2 at 15-, but not

9-weeks of age (Fig. 3C). No significant difference in the inci-

dence of nuclear inclusions was observed between R6/2 and

double transgenic mice at either age (Fig. 3D). Collectively,

these data reveal that human HSJ1a reduces levels of higher

order detergent insoluble aggregates in R6/2 mice, which correl-

ates with a reduction in nuclear inclusion size but not nuclear

inclusion incidence.

HSJ1a reduces aggregate load in
the nucleus but not cytoplasm of
R6/2 mice
To determine whether HSJ1a was able to alter aggregate load in

both the nucleus and cytoplasm, we performed cellular fraction-

ation on 15-week brain tissue from wild-type, HSJ1a, R6/2 and

Figure 1 HSJ1a transgene expression is CNS specific, increases with age and is heterogeneous throughout the brain. (A and B)

Representative western blots of human (hHSJ1a) and mouse (mHSJ1a) HSJ1a expression in the periphery and brain tissues of R6/2

and double transgenic (Dble) mice. (B) Cortex, striatum (Striat.), brainstem (Br Stem), hippocampus (Hippo) and cerebellum (Cbell) from

15-week-old R6/2 and double transgenic mice were western blotted for HSJ1a with antibody 16321. (C) HSJ1a levels in these brain

regions were analysed by densitometry and normalized to mouse HSJ1a. Mean relative expression was plotted �SEM for each brain

region (n = 4). (D) Representative western blot of the temporal expression of human HSJ1a and mouse HSJ1a in R6/2 and double

transgenic cortices. (E) Levels of human HSJ1a over-expression in 4-, 9- and 15-week double transgenic cortex were calculated relative to

mouse HSJ1a by densitometry. The mean relative expression was plotted �SEM for each age (n = 3). Statistical analysis was performed

using Student’s t-test (*P50.05, **P50.01, ***P50.005).
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double transgenic mice. We then subjected these fractions to

MW8 Seprion enzyme-linked immunosorbent assay to quantify

the levels of detergent insoluble aggregates present in these

compartments.

We found that aggregate load was reduced in the nucleus but not

cytosol of double transgenic mice at 15 weeks of age (Fig. 3E and F).

These findings and the purity of the fractions was confirmed by

western blotting (Fig. 3G). Interestingly, we also observed an

Figure 2 HSJ1a reduces levels of high order detergent insoluble mutant huntingtin in R6/2 mice. Levels of aggregated (A and C) and

soluble mutant huntingtin (B and D) were determined in R6/2 (light grey bars) and double transgenic (black bars) cortices (A and B) and

cerebellum (C and D) by MW8 seprion enzyme-linked immunosorbent assay and 2B7-MW1 time-resolved Förster resonance energy

transfer (TR-FRET), respectively. Wild-type (WT) and HSJ1a signals were considered to be background and were subtracted from R6/2 and

double transgenic readings, respectively. Mean values � SEM were plotted for each group (n5 6). (E) Western blotting with S830 con-

firmed that the double transgenic mice had reduced detergent insoluble mutant huntingtin trapped in the stacking gel and increased

detergent soluble mutant huntingtin in the resolving gel. (F) Levels of detergent soluble mutant huntingtin were measured by densitometry

and calculated relative to �-tubulin. Mean values were plotted � SEM for R6/2 and double transgenic mice (n = 6). Statistical analysis was

performed by Student’s t-test (*P50.05, **P5 0.01, ***P50.005). (G) Western blot of detergent insoluble high molecular weight

species isolated from R6/2 and double transgenic mouse cortices at 4-, 9- and 15 weeks of age, resolved by agarose gel electrophoresis

resolution of aggregates and detected using the anti-huntingtin (�-HTT) antibody S830 (representative of three experiments).

HSJ1a suppresses aggregation in HD mice Brain 2012: 135; 1180–1196 | 1185

 at U
C

L
 L

ibrary Services on M
arch 26, 2014

http://brain.oxfordjournals.org/
D

ow
nloaded from

 

http://brain.oxfordjournals.org/
http://brain.oxfordjournals.org/


Figure 3 HSJ1a reduces nuclear aggregate load in R6/2 cortex. Representative images of S830 immunohistochemistry (brown reaction

product) in motor cortex from 15 mm brain sections of wild-type (WT), HSJ1a, R6/2 and double transgenic (Dble) mice at (A) 9- and (B)

15 weeks of age. Methyl green was used as a nuclear counterstain. Scale bars: 10 mm. (C) Nuclear inclusion area and (D) percentage

of inclusion positive nuclei at 9- and 15 weeks of age were determined by manually counting more than 320 nuclei and measuring more

than 200 inclusions per mouse using Zeiss Axiovision software. Mean inclusion area was determined and plotted SEM for R6/2 (light grey

bar) and double transgenic (black bar) mice (n = 5). Aggregate load was quantified in (E) nuclear and (F) cytosolic fractions isolated from

WT, HSJ1a, R6/2 and double transgenic brain tissue at 15 weeks of age by MW8 Seprion enzyme-linked immunosorbent assay. WT

and HSJ1a signals were considered to be background and were subtracted from R6/2 and double transgenic readings, respectively.

Mean values � SEM were plotted for each group (n55). Statistical analysis was performed by Student’s t-test (*P50.05, **P50.01,

***P50.005). (G) Representative western blots of mutant huntingtin (S830), human HSJ1a (16321), �-tubulin and histone H3 in nuclear

(nuc) and cytosolic (Cyto) fractions derived from 15-week-old WT, HSJ1a, R6/2 and double transgenic brain tissue.
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Figure 4 HSJ1a associates with detergent insoluble mutant huntingtin complexes from 9 weeks of age onwards when over-expressed in

R6/2 mice. (A) Western blots probed for mutant huntingtin (HTT, S830, upper panels) or HSJ1 (S653, lower panels) after immunopre-

cipitation (IP) with anti-huntingtin (S830, MW1, MW8 and 3B5H10) antibodies. Huntingtin antibodies were chosen based on their ability

to recognize detergent soluble (MW1, 3B5H10 and S830) or insoluble (MW8 and S830) mutant huntingtin. MW8 can recognize soluble

mutant huntingtin by immunoprecipitation and western blot; however, in these experiments MW8 preferentially recognized detergent

insoluble material. Immunoprecipitations were performed on 15 week brain tissue from R6/2 and double transgenic mice. (B) Western

blots probed for mutant huntingtin (S830) and HSJ1 (S653) after immunoprecipitation with anti-HSJ1 (S653) from 15 week R6/2 and

double transgenic brain tissue (asterisks denote IgG bands). (C) Western blots probed for mutant huntingtin (S830) and HSJ1 (S653) after

HSJ1a suppresses aggregation in HD mice Brain 2012: 135; 1180–1196 | 1187
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enrichment of human HSJ1a in the nuclear fraction of double trans-

genic mice compared with the HSJ1a only transgenics (Fig. 3G).

Soluble mutant huntingtin was detected in cytosolic but not nuclear

fractions obtained from R6/2 and double transgenic brain tissues

(Fig. 3G). This is consistent with our previous observations that the

steady-state level of soluble mutant huntingtin is predominantly

cytosolic and that any soluble nuclear mutant huntingtin is rapidly

recruited into aggregates (Benn et al., 2005; Landles et al., 2010).

Interestingly, there was an increase in soluble mutant huntingtin in

the double transgenic cytosol, highlighting that the HSJ1a-mediated

reduction in aggregation and increase in soluble mutant huntingtin

occur in different compartments.

HSJ1a associates with aggregated
but not soluble mutant huntingtin in
9- and 15-week-old R6/2 mice
To elucidate the mechanism by which human HSJ1a was able to

influence aggregate load, immunoprecipitations were performed

on 15 week mouse brain tissue using antibodies that recognize

detergent soluble (3B5H10 and MW1), or both soluble and aggre-

gated (MW8 and S830) mutant huntingtin. Immunoblotting with

these antibodies or anti-HSJ1 antibody (S653), revealed that

human HSJ1a co-immunoprecipitated specifically with huntingtin

antibodies, which precipitated detergent insoluble mutant hunting-

tin that was trapped in the stacking gel and well (Fig. 4A). This

was further confirmed by reciprocal immunoprecipitation with

anti-HSJ1, which precipitated only detergent insoluble mutant

huntingtin (Fig. 4B).

To ascertain the age at which human HSJ1a associates with deter-

gent insoluble mutant huntingtin complexes, S830 immunoprecipita-

tions were performed in 4-, 9-, and 15-week old brain tissue.

Interestingly, the amount of human HSJ1a-associated mutant

huntingtin high-molecular weight species increased with age (Fig.

4C). Immunohistochemistry performed on 15-week brain sections

from double transgenic mice with S830 or an HSJ1a-specific antibody

(16321) revealed that human HSJ1a co-localized exclusively with

nuclear inclusions despite human HSJ1a’s cytoplasmic and nuclear

localization (Fig. 4D and Supplementary Fig. 4). This observation is

similar to previous reports in Huntington’s disease mice for other

chaperones (Hay et al., 2004) and suggests that either the compos-

ition or conformation of cytoplasmic inclusions is not favourable for

prolonged association with human HSJ1a and other chaperones.

To further explore the conformation/morphology of human

HSJ1a–mutant huntingtin complexes, aggregated material was iso-

lated from 15-week old R6/2 and double transgenic cortices using

Seprion ligand-coated magnetic beads (Sathasivam et al., 2010).

Aggregates were then subjected to transmission electron

microscopy after immuno-gold labelling with anti-huntingtin

(MW8) and anti-HSJ1a (16321) antibodies. Double gold labelling

was only observed in aggregate material isolated from double

transgenic mice (Fig. 4E), thereby confirming that HSJ1a associates

directly with aggregated mutant huntingtin. Both R6/2 and double

transgenic mice contained a multitude of dense MW8 positive

aggregates; however, no obvious difference in aggregate morph-

ology or conformation was observed between mice (Fig. 4E and

Supplementary Fig. 5). As expected, no MW8 or HSJ1a labelled

material was isolated from wild-type or HSJ1a mice

(Supplementary Fig. 5). These data show that human HSJ1a asso-

ciates with detergent insoluble mutant huntingtin, reduces aggre-

gate load, and increases mutant huntingtin solubility in R6/2 mice.

HSJ1a associates with a subpopulation
of aggregate species
To further understand the species of mutant huntingtin that human

HSJ1a is able to associate with, aggregated material was immuno-

precipitated with S830 or S653 from 9- and 15-week brain tissue.

Immunoprecipitation material was then subjected to agarose gel

electrophoresis resolution of aggregates and immunoblotting with

anti-huntingtin (S830). The aggregate smears observed after S830

immunoprecipitation were slightly shorter than those in the input

lanes, suggesting that extremely large aggregates are not efficiently

magnetically separated by S830. Interestingly, the aggregate smears

after HSJ1 immunoprecipitation were found to be much shorter

than the smears generated by S830 immunoprecipitation

(Fig. 5A). This suggests that human HSJ1a associates with a sub-

population of smaller mutant huntingtin complexes, potentially

blocking their growth into higher order aggregate species.

HSJ1a association with aggregates
is dependent on functional
ubiquitin-interacting motifs
As HSJ1a possesses an N-terminal J-domain and two C-terminal

UIM motifs (UIM domain), which mediate the association with

HSP70 and ubiquitin chains, respectively (Westhoff et al., 2005),

we used immunoprecipitation and immunoblotting to further

examine the composition of human HSJ1a:mutant huntingtin com-

plexes. Interestingly, an increase in levels of mutant huntingtin

associated HSP70 and HSP90 was observed in double transgenic

mice compared with R6/2 (Fig. 5B). Furthermore, S830 immuno-

precipitations performed on denatured complexes eluted after

HSJ1 immunoprecipitation confirmed that HSJ1a associated with

ubiquitylated mutant huntingtin complexes (Fig. 5C). No change

was observed in the levels of DNAJB1 (HDJ-1), p62, GRP94 or

Figure 4 Continued
immunoprecipitation with S830 or S653 from 4-, 9- and 15-week-old R6/2 or double transgenic (Dble) brain tissue. (D)

Immunofluorescence images from the cortex of 15-week-old double transgenic mice stained with anti-huntingtin (S830) and anti-HSJ1a

(16321) antibodies. Scale bars: 10mm, arrowheads show the position of cytoplasmic inclusions, arrows show the position of nuclear

inclusions. (E) Representative transmission electron microscopy images of aggregated material isolated from 15-week-double transgenic

cortex by Seprion pull down. Aggregated material was double labelled with 5 nm [HSJ1a (16321): arrowheads] or 10 nm [mutant

huntingtin (MW8): arrows] gold particles. Scale bars: 20 nm.
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Figure 5 HSJ1a associates with high molecular weight mutant huntingtin complexes via a UIM-dependent mechanism. (A) Western blot

of aggregated material isolated by anti-huntingtin (S830) or anti-HSJ1 (S653) immunoprecipitation and resolved by agarose gel elec-

trophoresis resolution of aggregates. Immunoprecipitations were performed on 9- and 15-week brain tissue from HSJ1a, R6/2 or double

transgenic (Dble) mice and mutant huntingtin was detected with S830. (B) Western blots showing co-immunoprecipitation of major

regulators of protein homoeostasis from 15-week R6/2 and double transgenic brain tissue after immunoprecipitation with anti-huntingtin

(S830) or anti-HSJ1 (S653) antibodies. (C) HSJ1 (S653) immunoprecipitation was performed on 15-week R6/2 or double transgenic brain

lysates. Immunoprecipitation complexes were eluted from magnetic beads in denaturing buffer and subjected to a second immunopre-

cipitation with S830. Levels of ubiquitylated detergent insoluble material after each immunoprecipitation were determined by western

blotting and immuno-detection with anti-huntingtin (S830) and anti-Ubiquitin (�-Ub) antibodies. (D) Western blots probed with S830

after HSJ1 immunoprecipitation (anti-myc) from 4-, 9- and 15-week R6/2 brain lysates incubated with lysates from SK-N-SH cells

expressing myc-tagged wild-type, J-domain inactive (H31Q) or UIM inactive (�UIM) HSJ1a (asterisks denote IgG bands).
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HSP60 associated with detergent insoluble mutant huntingtin

complexes (Supplementary Fig. 6). However, p62 was associated

with HSJ1a–mutant huntingtin complexes but not with HSJ1a in

the absence of mutant huntingtin (Fig. 5B). This most likely re-

flects sequestration of p62 by mutant huntingtin inclusions

(Bjorkoy et al., 2005).

To confirm that the absence of an association between human

HSJ1a and soluble mutant huntingtin was not a consequence of

rapid mutant huntingtin degradation and to determine whether

the J-domain or UIM motifs of HSJ1a are integral to HSJ1a com-

plex association, we expressed myc-tagged HSJ1a or point mutant

variants in SK-N-SH cells. These cell lysates were incubated with

R6/2 brain lysates from 4-, 9- and 15-week old mice, and immu-

noprecipitation was performed with an anti-myc antibody. As was

observed previously in double transgenic mice (Fig. 4), human

HSJ1a was found to specifically co-immunoprecipitate high mo-

lecular weight mutant huntingtin, and not detergent soluble

mutant huntingtin, from R6/2 brains in an age-dependent

manner (Fig. 5D). To further interrogate the possibility that

HSJ1a may promote the rapid degradation of soluble mutant hun-

tingtin in mouse brain lysates, we performed ex vivo degradation

assays using 4-week old R6/2 brain lysates, which contain high

levels of soluble mutant huntingtin. We did not observe any deg-

radation of mutant huntingtin in lysates over a 16-h period in the

presence of bovine serum albumin or HSJ1a (Supplementary Fig.

7A and B). To confirm that the proteasome was active in the

lysates we added luciferase, a previously described HSJ1a client

(Westhoff et al., 2005; Howarth et al., 2007), to the lysate and

measured luciferase activity over the same time course. We

observed a marked decrease in luciferase activity that was

enhanced by HSJ1a (Supplementary Fig. 7C), thereby confirming

that HSJ1a can direct the degradation of client proteins in R6/2

lysates. These data suggest that a rapid turnover of soluble mutant

huntingtin by HSJ1a is not responsible for the failure to detect an

association between soluble mutant huntingtin and HSJ1a.

Interestingly, HSJ1a lacking a functional J-domain (H31Q)

showed a reduced ability to bind aggregated mutant huntingtin;

however, point mutations that disrupt the function of the UIM

domains of HSJ1a [S219A/E222A/S262A/E265A (�UIM)]

(Westhoff et al., 2005) almost completely abolished human

HSJ1a mutant huntingtin binding ability (Fig. 5D). The importance

of the UIM domains was further confirmed by incubating HSJ1a

with R6/2 brain lysates in the presence of different ubiquitin con-

jugates. We observed that while K48 linked chains and mono

ubiquitin were unable to compete with mutant huntingtin for

HSJ1a binding (Fig. 6A), the presence of K63-linked ubiquitin

chains greatly inhibited the human HSJ1a–mutant huntingtin as-

sociation (Fig. 6A and B). Furthermore, human HSJ1a co-localized

with K63 ubiquitin immunoreactivity in nuclear inclusions in

double transgenic brain (Fig. 6C), thereby confirming that the

Figure 6 HSJ1a associates with K63 ubiquitylated mutant huntingtin inclusions. Western blots probed with S830, S653 or �-Ub anti-

bodies after HSJ1 (S653 or �-myc) immunoprecipitation of material from 15-week R6/2 brain lysates incubated with (A) purified HSJ1a or

(B) lysates from SK-N-SH cells expressing wild-type or UIM inactive (�UIM) HSJ1a in the presence of UbK48 chains or UbK63 chains (A

and B) (asterisks denote IgG bands). (C) Immunofluorescence images from the cortex of 15-week-old double transgenic mice stained with

anti-huntingtin (S830), anti-HSJ1a (16321) and anti-UbK63 antibodies. Scale bars: 10mm, arrowheads show the position of cytoplasmic

inclusions; arrows show the position of nuclear inclusions.
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human HSJ1a–mutant huntingtin complexes are K63 ubiquitylated

in vivo. Interestingly, as was observed for human HSJ1a, the K63

ubiquitin signal was found only to decorate nuclear inclusions.

HSJ1a associates with mutant hunting-
tin aggregates via client binding and
ubiquitin-interacting motif domains
To confirm that the inability of �UIM HSJ1a to immunoprecipitate

aggregated mutant huntingtin is not a consequence of a general

impairment in HSJ1a client recognition and binding, we incubated

HSJ1a with native or denatured ovalbumin (denatured ovalbumin,

a classic chaperone substrate) and performed immunoprecipitation

with S653. Immunoblotting demonstrated that HSJ1a interacted

specifically with denatured ovalbumin, a finding that is consistent

with HSJ1a’s role as a chaperone (Fig. 7A). Despite mutation in both

UIMs, �UIM HSJ1a was able to recognize denatured ovalbumin as

effectively as wild-type HSJ1a (Fig. 7B). Moreover, denatured ov-

albumin was able to compete with mutant huntingtin complexes for

human HSJ1a binding in a concentration-dependent manner (Fig.

7C). Taken together, these data show that the ability of HSJ1a to

associate with high molecular weight mutant huntingtin from R6/2

brain tissue requires both chaperone client binding and UIMs.

The J-domain and ubiquitin-interacting
motifs are both important for
HSJ1a-mediated suppression of mutant
huntingtin aggregation
To assess the impact of the J-domain and UIM domains on the

suppression of mutant huntingtin aggregation by human HSJ1a,

we modified a previously published in vitro assay (Scherzinger

Figure 7 HSJ1a reduces huntingtin aggregation in a J-domain and UIM-dependent manner. Purified wild-type (A and B) or �UIM (B)

HSJ1a was incubated with native (Ova) or denatured ovalbumin (d-Ova) for 30 min at room temperature, after which, anti-HSJ1 antibody

S653 was used to immunoprecipitate material from incubations. Western blotting was performed to determine levels of HSJ1a and ov-

albumin after immunoprecipitation. (C) Lysates from SK-N-SH cells expressing HSJ1a were incubated with 15-week R6/2 brain lysates in the

presence of 0.2, 1, 5 or 10 mg of denatured ovalbumin. Levels of denatured ovalbumin, huntingtin and HSJ1a were determined by

immunoblotting after immunoprecipitation with anti-HSJ1 (S653). (D) GST-HTT Q51 in vitro aggregation assays were performed in the

presence of SK-N-SH cell lysates and ATP regenerating system containing no additional chaperone (white bars), wild-type HSJ1a (dark grey

bars), J-domain inactive HSJ1a (light grey bars) or �UIM HSJ1a (black bars). HSJ1a was added to GST-HTT Q51 at a ratio of 1:10. Reactions

were stopped 2, 7 and 10 h after removal of GST tag from GST-HTT Q51 by TEV protease cleavage. Levels of detergent insoluble mutant

huntingtin were determined by filter trap, immunoblotting and densitometry. Mean signal was plotted for each group � SEM (n = 4). (E)

GST-HTT Q51 in vitro nucleation assays were performed using 120 ng of detergent insoluble material purified from brains of wild-type

(white bars), R6/2 (light grey bars) or double transgenic (black bars) or 160 ng from double transgenic (dark grey bars). Mean signal was

plotted for each group � SEM (n = 6). Statistical analysis was performed by Student’s t-test (*P50.05, **P5 0.01, ***P50.005).
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et al., 1999; Tam et al., 2009) to quantify GST-HTT Q51 aggre-

gation in the presence of purified HSJ1a or different SK-N-SH cell

lysates and an ATP regenerating system. Consistent with previ-

ously published data (Tam et al., 2009), mutant huntingtin aggre-

gation proceeded rapidly and reached saturation 10 h after

initiation of AcTEVTM protease cleavage of the GST tag

(Supplementary Fig. 8A). While addition of bovine serum albumin

had no effect on aggregation kinetics, the addition of HSJ1a

reduced mutant huntingtin aggregation in a substoichiometric

manner (Fig. 7D and Supplementary Fig. 8B). Furthermore, while

HSJ1a was unable to reverse aggregation after 7 h, the addition of

HSJ1a to preformed aggregates at 2 h did significantly suppress

further aggregation (Supplementary Fig. 8C). In contrast, both

H31Q and �UIM HSJ1a were unable to suppress mutant hunting-

tin aggregation, suggesting that both the J and UIM domains are

important for HSJ1a-mediated suppression of aggregation in the

presence of other proteostasis factors (Fig. 7D).

The in vitro aggregation of mutant huntingtin can be acceler-

ated by the addition of seeds of pre-aggregated material as nu-

cleation factors (Scherzinger et al., 1999; Tam et al., 2009). We

hypothesized that HSJ1a would modify the ability of mutant hun-

tingtin aggregates to seed further aggregation. To test this hy-

pothesis, we reduced the GST-HTT Q51 concentration so that it

would only aggregate rapidly with nucleation from preformed

mutant huntingtin aggregates and added detergent insoluble

mutant huntingtin purified from R6/2 or double transgenic

brains according to the method of Nekooki-Machida et al.

(2009). The R6/2-derived mutant huntingtin aggregates efficiently

nucleated GST-HTT Q51 aggregation (Fig. 7E). Importantly,

double transgenic derived mutant huntingtin aggregates were sig-

nificantly less able to nucleate aggregation, even when 30% more

material was added to compensate for the reduction in aggrega-

tion observed in the Seprion assay (Fig. 2A). Therefore, human

HSJ1a expression can modify the ability of aggregated mutant

huntingtin to seed further aggregation, thereby reducing the re-

cruitment of soluble mutant huntingtin and reducing aggregation.

Human HSJ1a modestly improves
neurological phenotypes at late stage
disease in R6/2 mice
Finally, we wanted to determine whether the effects of HSJ1a on

mutant huntingtin aggregation coincided with an amelioration of

R6/2 disease progression. To address this we used a set of estab-

lished quantitative tests to assess behavioural and physiological

phenotypes in mice (Hockly et al., 2003a, b, 2006). Mice were

well matched for CAG repeat size (Supplementary Table 1) and

phenotypic parameters were measured from 4- to 14-weeks of

age in wild-type, HSJ1a, R6/2 and double transgenic mice. As

expected, R6/2 mice weighed less than wild-type mice by 11

weeks of age and gained weight at a slower rate. In keeping

with previously published data, R6/2 mice also showed decreased

brain weight with disease progression (Davies et al., 1997).

Human HSJ1a over-expression had no significant effect on the

brain or body weight of wild-type or R6/2 mice at any age

tested (Fig. 8A and B).

RotaRod performance is a sensitive indicator of balance and

motor coordination, which has been reliably shown to decline in

R6/2 mice (Hockly et al., 2003a). Consistent with previous results,

R6/2 RotaRod performance was impaired by 8 weeks and dete-

riorated with age. Human HSJ1a expression was found to signifi-

cantly improve the RotaRod performance of R6/2 mice at 12- and

14-weeks of age (Fig. 8C). In addition, forelimb grip strength was

assessed at 4-, 11- and 13-weeks of age. Consistent with previous

data, the grip strength of R6/2 and double transgenic mice dete-

riorated with age. Human HSJ1a expression improved R6/2 grip

strength at 13-weeks of age (Fig. 8D).

Exploratory activity was assessed fortnightly from 5- to 13-weeks

of age as described previously (Hockly et al., 2006). Mice were as-

sessed for a period of 30 min for total activity and mobility

(Supplementary Fig. 9), and the statistical analysis is summarized in

Supplementary Table 3. R6/2 mice exhibited significant

hypo-activity with disease progression compared with wild-type

mice. Both overall activity and mobility were improved at 11 weeks

in double transgenic mice (Fig. 8E and Supplementary Table 2).

Taken together, these findings show that over-expression of HSJ1a

modestly improves several phenotypic parameters in R6/2 mice.

Finally, reduced levels of Bdnf promoter transcripts are a hallmark

of disease progression in Huntington’s disease (Zuccato et al., 2001).

TaqMan� real-time quantitative polymerase chain reaction and

enzyme-linked immunosorbent assay were used to determine levels

of BDNF messenger RNA and protein, respectively. We found that

R6/2 mice had significantly reduced levels of BDNF messenger RNA

and protein in cortex at 15-weeks of age. Human HSJ1a expression

did not alter BDNF levels in wild-type mice but did significantly pre-

serve levels of BDNF messenger RNA and protein in double trans-

genic mice (Fig. 8F and Supplementary Fig. 10). Taken together,

these data show that HSJ1a reduces aggregate load with a concomi-

tant improvement in disease progression in R6/2 mice.

Discussion
For over 10 years, DNAJ (HSP40) chaperones have been recog-

nized as potent modifiers of polyglutamine aggregation and tox-

icity (Muchowski and Wacker, 2005). However, the effect of

DNAJ over-expression on polyglutamine disease progression in

the mouse brain has remained unknown. Over-expression of

human HSJ1a (human HSJ1a/DNAJB2a) reduced mutant hunting-

tin exon 1 aggregate load in the cortex and striatum of R6/2 mice,

but not cerebellum. This is most likely due to the fact that the

cerebellar expression of human HSJ1a was much lower than in

other brain tissues and suggests that the ability of HSJ1a to

modify mutant huntingtin aggregation is dependent on its relative

expression. These findings confirm that HSJ1a is a potent modifier

of polyglutamine aggregation and, importantly, demonstrate that

previous observations in cell culture translate to the mouse brain

(Westhoff et al., 2005; Borrell-Pages et al., 2006; Howarth et al.,

2007; Hageman et al., 2010).

HSJ1a was previously shown to suppress aggregation in cells by

associating with soluble mutant huntingtin, thereby promoting its

degradation via the proteasome (Westhoff et al., 2005).

Surprisingly, we found no evidence of an association between
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HSJ1a and detergent soluble forms of mutant huntingtin in R6/2

brain tissue. It is possible that differences in polyglutamine length

and the environment of the mouse brain result in a conformation

of soluble mutant huntingtin that is not readily recognized by

HSJ1a (Jana et al., 2000; Helmlinger et al., 2004). Alternatively,

soluble mutant huntingtin–HSJ1a complexes may be rapidly

degraded in mouse brain tissue making them difficult to detect

by co-immunoprecipitation. However, we were also unable to

detect soluble HSJ1a–mutant huntingtin complexes from ex vivo

immunoprecipitations, or an effect of HSJ1a on soluble mutant

huntingtin degradation ex vivo, which argues against this. While

we cannot completely exclude the possibility that soluble

HSJ1a:mutant huntingtin complexes are too transient for detec-

tion, these data suggest that in R6/2 mice human HSJ1a over-

expression reduces aggregate load in a manner independent of

soluble mutant huntingtin recognition and proteasomal targeting.

This is intriguing given that other mammalian chaperones such as

HSP70, HDJ-1 and TRiC have been proposed to suppress aggre-

gation by acting at the level of soluble mutant huntingtin (Tam

et al., 2009; Lotz et al., 2010).

In contrast, we found direct evidence that HSJ1a is able to as-

sociate with detergent insoluble high molecular weight complexes

of mutant huntingtin. Consistent with previous data from cell cul-

ture (Westhoff et al., 2005; Howarth et al., 2007), we found that

HSJ1a co-localized with mutant huntingtin inclusions when

over-expressed in R6/2 brain tissue. Interestingly, despite the pres-

ence of HSJ1a in both the nucleus and cytoplasm, co-localization

occurred almost exclusively with nuclear inclusions. This has been

observed previously with the chaperones HDJ-1 (DNAJB1), HDJ-2

(DNAJA1), HSC70 (HSPA8), �-SGT and b-SGT (Hay et al., 2004)

Figure 8 HSJ1a over-expression modestly improves neurological phenotypes in R6/2 mice. Wild-type (WT, white bars and dotted lines),

HSJ1a (dark grey bars/lines), R6/2 (light grey bars/lines) and double transgenic (Dble, black bars/lines) mice were subjected to (A)

body weight, (B) brain weight, (C) RotaRod, (D) grip strength or (E) activity assessment from 4- to 15 weeks of age. Mean values for

each parameter were plotted for each group � SEM (n5 16 per group). Statistical analysis was performed by GLM-ANOVA in SPSS

(*P50.05, **P50.01). (F) Relative levels of Bdnf-B (coding exon) messenger RNA in 15 week cortex as measured by TaqMan�

quantitative polymerase chain reaction. Levels of Bdnf-B were normalized to the reference genes Atp5b and Canx. Statistical analysis

was performed by Student’s t-test (*P50.05, **P50.01).
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and raises the intriguing possibility that cytoplasmic inclusions

adopt a conformation or composition that is unfavourable for rec-

ognition and binding by chaperones, or that chaperone decorated

cytoplasmic inclusions are rapidly removed by autophagy.

Furthermore, HSJ1a was found to co-immunoprecipitate insoluble

material from R6/2 brain tissue more effectively at 9- and

15-weeks than at 4-weeks of age. While the temporal increase

in HSJ1a expression may contribute to this, ex vivo immunopre-

cipitations demonstrated that human HSJ1a–mutant huntingtin

complexes were preferentially formed at 9- and 15-weeks, even

when equivalent levels of human HSJ1a were added to R6/2 brain

lysates. These findings suggest that HSJ1a displays an age-de-

pendent conformational and/or compositional selectivity when

binding high molecular weight mutant huntingtin complexes

and, coupled with increased HSJ1a expression, most likely explains

why aggregate load only shows pronounced reduction in R6/2

mice at 15-weeks of age.

HSJ1 is distinguished by its N-terminal J-domain and UIMs

(Chapple et al., 2004; Kampinga and Craig, 2010). The accumulation

of ubiquitin chains and ubiquitylation of mutant huntingtin inclusions

have been reported in Huntington’s disease models (Bence et al.,

2001; Bennett et al., 2005, 2007). Interestingly, we found that

HSJ1a co-localizes with K63 ubiquitylated inclusions in R6/2 brain

tissue and that UIM mutants of HSJ1a exhibit a reduced ability to

associate with mutant huntingtin. Conversely, a J-domain mutant

(H31Q) that is unable to functionally co-operate with HSP70 could

still form human HSJ1a–mutant huntingtin complexes. In addition,

human HSJ1a–mutant huntingtin complex formation was inhibited in

ex vivo immunoprecipitations by the addition of K63 but not K48

linked ubiquitin chains, and by the addition of an excess of denatured

ovalbumin (a client for HSJ1a binding). Furthermore, human HSJ1a

and K63 ubiquitin were both found to co-localize exclusively with

nuclear inclusions in double transgenic mouse brains. Taken together,

these data suggest that human HSJ1a–mutant huntingtin association

requires HSJ1a chaperoning ability and the recognition of

K63-ubiquitin chains. Sequential immunoprecipitation demonstrated

that the ubiquitylated factor necessary for HSJ1a complex formation

is tightly associated with mutant huntingtin. However, whether that

factor is mutant huntingtin itself or a tightly sequestered protein is

unclear. K63 linked ubiquitin chains have been implicated in the cel-

lular formation of tau and SOD1 inclusions, with K63 positive inclu-

sions preferentially targeted to lysosomes for degradation (Tan et al.,

2008). No change in levels of p62 or LC3II were observed upon

human HSJ1a over-expression and while p62 was found to associate

with human HSJ1a in the presence of mutant huntingtin, this is most

likely due to the fact that p62 is present in mutant huntingtin inclu-

sions (Bjorkoy et al., 2005). These data suggest that despite human

HSJ1a–mutant huntingtin complex formation occurring in the pres-

ence of factors that promote autophagy, HSJ1a-mediated reduction

of mutant huntingtin aggregation does not occur primarily through

stimulating lysosomal targeting.

To elucidate how HSJ1a reduces aggregate load in R6/2 mice, we

subjected human HSJ1a:mutant huntingtin complexes to closer scru-

tiny. Human HSJ1a-associated material was found to comprise a high

molecular weight complex subpopulation enriched for HSP70 and

HSP90. HSP70 has been proposed to associate dynamically with poly-

glutamine inclusions (Kim et al., 2002) although its exact role in doing

so is unclear. We found that in vitro, HSJ1a-mediated suppression of

aggregation requires functional co-operation with HSP70. As such, it

is likely that recruitment of HSP70 to mutant huntingtin aggregates

represents an important step in the mechanism by which HSJ1a re-

duces protein aggregation in vivo.

Examination of high molecular weight mutant huntingtin size

distribution by agarose gel electrophoresis resolution of aggregates

revealed that HSJ1a over-expression predominantly reduced levels

of high molecular weight material with a concomitant reduction in

nuclear inclusion size. Given that levels of detergent soluble

mutant huntingtin are significantly increased upon HSJ1a

over-expression, it is unlikely that these observations are simply

caused by HSJ1a restructuring aggregates into a more compact

conformation. In vitro assays revealed that, as with other DNAJB

chaperones (Hageman et al., 2010), HSJ1a effectively suppressed

mutant huntingtin aggregation. In addition, while HSJ1a was

unable to reverse aggregation, we found that addition of HSJ1a

to preformed aggregates in vitro did significantly reduce further

aggregation. Strikingly, the ability of HSJ1a to suppress mutant

huntingtin aggregation was dependent on J-domain and UIM

function and suggests that while non-essential for binding, a func-

tional association with HSP70 is necessary to suppress aggregate

formation. Interestingly, UIM mutants of HSJ1a significantly

increased mutant huntingtin aggregation in vitro. This is perhaps

not surprising given that these mutants retain their ability to inter-

act with HSP70 molecules and may therefore impede HSP70-

mediated suppression of aggregation in these reactions. We pro-

pose that HSJ1a selectively recruits HSP70 to a subpopulation of

mutant huntingtin oligomers through K63 ubiquitin chain recog-

nition and client protein binding. HSJ1a and HSP70 can then act

to inhibit inclusion growth by physically blocking sites of polymer-

ization and altering the on and off rates for polymerization.

Alternatively, HSJ1a and HSP70 could act to refold mutant hun-

tingtin oligomers into subtly different conformations (Muchowski

et al., 2000; Wacker et al., 2004). However, if this is the case, the

rearrangement of mutant huntingtin must be relatively subtle, as

no clear shift in aggregate morphology was detectable by trans-

mission electron microscopy.

In addition to reducing aggregate load, DNAJ chaperones

have been shown to reduce polyglutamine toxicity in cells and

flies (Fayazi et al., 2006; Hageman et al., 2010). We found that

CNS specific over-expression of human HSJ1a improved activity,

grip strength and RotaRod ability in R6/2 mice but did not im-

prove body or brain weight at any age tested. This suggests

that HSJ1a modifies disease progression independently of non-

neurological symptoms. In addition, phenotypic improvements in

R6/2 mice occurred late in disease progression, a time that coin-

cides with optimal human HSJ1a:mutant huntingtin binding and

correlates with a pronounced reduction in aggregate load.

Previous studies have shown that a cystamine-induced increase

in levels of HSJ1 transcripts correlates with an improvement in

disease progression in Huntington’s disease mice (Karpuj et al.,

2002). Upregulation of HSJ1b rather than HSJ1a was proposed

to be responsible for these beneficial effects by increasing BDNF

levels (Borrell-Pages et al., 2006). We did not observe any change

in BDNF transcript or protein levels upon over-expression of

human HSJ1a in wild-type mice. However, levels of BDNF
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messenger RNA and protein were partly preserved in R6/2 mice

over-expressing HSJ1a. This is most likely a reflection of reduced

aggregate load (Zuccato et al., 2001) but could also contribute to

the behavioural improvements observed in R6/2 mice.

In summary, our data provide the first evidence to our know-

ledge that a J-domain chaperone can reduce aggregate load and

ameliorate disease progression, albeit modestly, in a mouse model

of polyglutamine disease. HSJ1a acts through a previously unde-

scribed chaperone mechanism that is focused at the level of ubi-

quitylated high molecular weight mutant huntingtin and works to

prevent aggregate growth in a manner similar to that described

for HSP104-mediated suppression of Sup35 prionogenesis in yeast

(Shorter and Lindquist, 2008). This is an important proof of prin-

ciple and shows that increasing levels of DNAJ chaperones can be

beneficial in the context of the mammalian brain. As such we

propose that efforts to increase HSJ1a expression pharmacologic-

ally may be a valid therapeutic strategy in Huntington’s disease

and other polyglutamine diseases, particularly with regards to im-

proving late stage disease outcomes.
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