271 research outputs found

    UrQMD calculations of two-pion HBT correlations in p+p and Pb+Pb collisions at LHC energies

    Full text link
    Two-pion Hanbury-Brown-Twiss (HBT) correlations for p+p and central Pb+Pb collisions at the Large-Hadron-Collider (LHC) energies are investigated with the ultra-relativistic quantum molecular dynamics model combined with a correlation afterburner. The transverse momentum dependence of the Pratt-Bertsch HBT radii RlongR_{long}, RoutR_{out}, and RsideR_{side} is extracted from a three-dimensional Gaussian fit to the correlator in the longitudinal co-moving system. In the p+p case, the dependence of correlations on the charged particle multiplicity and formation time is explored and the data allows to constrain the formation time in the string fragmentation to τf0.8\tau_f \leq 0.8 fm/c. In the Pb+Pb case, it is found that RoutR_{out} is overpredicted by nearly 50%. The LHC results are also compared to data from the STAR experiment at RHIC. For both energies we find that the calculated Rout/RsideR_{out}/R_{side} ratio is always larger than data, indicating that the emission in the model is less explosive than observed in the data.Comment: 9 pages, 4 figures, 1 table. Talk given by Qingfeng Li at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Effects of bearing clearance on the chatter stability of milling process

    Get PDF
    In the present study, the influences of the bearing clearance, which is a common fault for machines, to the chatter stability of milling process are examined by using numerical simulation method. The results reveal that the presence of bearing clearance could make the milling process easier to enter the status of chatter instability and can shift the chatter frequency. In addition, the spectra analysis to vibration signals obtained under the instable milling processes show that the presence of bearing clearance could introduce more frequency components to the vibration responses but, however, under both the stable and instable milling processes, the generated frequency components will not violate the ideal spectra structures of the vibration responses of the milling process, which are usually characterized by the tooth passing frequency and its associated higher harmonics for the stable milling process and by the complex coupling of the tooth passing frequency and the chatter frequency for the instable milling process. This implies that, even under the case with bearing clearance fault, the stability of the milling process can still be determined by viewing the frequency spectra of the vibration responses. Moreover, the phenomena of the chatter frequency shift and the generation of more components provide potential ways to detect the bearing clearance in machines. (C) 2010 Elsevier Ltd. All rights reserved

    Surrogate models to unlock the optimal design of stiffened panels accounting for ultimate strength reduction due to welding residual stress

    Get PDF
    In this paper, for the first time, a three-step approach for the optimal design of stiffened panels accounting for the ultimate limit state due to welding residual stress is developed. First, authors rely on state-of-the-art analytical approaches coupled with recently data-driven nonlinear finite element methods surrogates characterized by functional which are computationally expensive to build but computationally inexpensive to use. Then, surrogates are used within a design optimization loop to find new optimal designs since nonlinear finite element methods are too computationally demanding for this purpose. Finally, the new designs are reassessed with the original nonlinear finite element methods to verify that substituting them with their surrogates in the optimization loop actually leads to better designs. Results obtained optimizing a series of parameters of a commonly used stiffened panel geometry under different scenarios will support the authors’ novel approach

    Formation time dependence of femtoscopic ππ\pi \pi correlations in p+p collisions at sNN\sqrt{s_{NN}}=7 TeV

    Full text link
    We investigate femtoscopic ππ\pi \pi correlations using the UrQMD approach combined with a correlation afterburner. The dependence of ππ\pi \pi correlations on the charged particle multiplicity and formation time in p+p collisions at sNN\sqrt{s_{NN}}= 7 TeV is explored and compared to present ALICE data. The data allows to constrain the formation time in the string fragmentation to τf0.8\tau_f \leq 0.8 fm/c.Comment: 9 pages, 2 figure

    Generation of fusion protein EGFRvIII-HBcAg and its anti-tumor effect in vivo

    Get PDF
    The epidermal growth factor receptor variant III (EGFRvIII) is the most common variation of EGFR. Because it shows a high frequency in several different types of tumor and has not been detected in normal tissues, it is an ideal target for tumor specific therapy. In this study, we prepared EGFRvIII-HBcAg fusion protein. After immunization with fusion protein, HBcAg or PBS, the titers of antibody in BALB/c mice immunized with fusion protein reached 2.75 × 105. Western blot analysis demonstrated that the fusion protein had specific antigenicity against anti-EGFRvIII antibody. Further observation showed fusion protein induced a high frequency of IFN-γ-secreting lymphocytes. CD4+T cells rather than CD8+T cells were associated with the production of IFN-γ. Using Renca-vIII(+) cell as specific stimulator, we observed remarkable cytotoxic activity in splenocytes from mice immunized with fusion protein. Mice were challenged with Renca-vIII(+) cells after five times immunization. In fusion protein group, three of ten mice failed to develop tumor and all survived at the end of the research. The weight of tumors in fusion protein were obviously lighter than that in other two groups (t = 4.73, P = 0.044;t = 6.89, P = 0.040). These findings demonstrated that EGFRvIII-HBcAg fusion protein triggered protective responses against tumor expressing EGFRvIII

    ODE-Driven Sketch-Based Organic Modelling

    Get PDF
    How to efficiently create 3D models from 2D sketches is an important problem. In this paper we propose a sketch-based and ordinary differential equation (ODE) driven modelling technique to tackle this problem. We first generate 2D silhouette contours of a 3D model. Then, we select proper primitives for each of the corresponding silhouette contours. After that, we develop an ODE-driven and sketch-guided deformation method. It uses ODE-based deformations to deform the primitives to exactly match the generated 2D silhouette contours in one view plane. Our experiment demonstrates that the proposed approach can create 3D models from 2D silhouette contours easily and efficiently

    Thermal Dileptons at LHC

    Get PDF
    We predict dilepton invariant-mass spectra for central 5.5 ATeV Pb-Pb collisions at LHC. Hadronic emission in the low-mass region is calculated using in-medium spectral functions of light vector mesons within hadronic many-body theory. In the intermediate-mass region thermal radiation from the Quark-Gluon Plasma, evaluated perturbatively with hard-thermal loop corrections, takes over. An important source over the entire mass range are decays of correlated open-charm hadrons, rendering the nuclear modification of charm and bottom spectra a critical ingredient.Comment: 2 pages, 2 figures, contributed to Workshop on Heavy Ion Collisions at the LHC: Last Call for Predictions, Geneva, Switzerland, 14 May - 8 Jun 2007 v2: acknowledgment include

    Representative Landscapes in the Forested Area of Canada

    Get PDF
    Canada is a large nation with forested ecosystems that occupy over 60% of the national land base, and knowledge of the patterns of Canada’s land cover is important to proper environmental management of this vast resource. To this end, a circa 2000 Landsat-derived land cover map of the forested ecosystems of Canada has created a new window into understanding the composition and configuration of land cover patterns in forested Canada. Strategies for summarizing such large expanses of land cover are increasingly important, as land managers work to study and preserve distinctive areas, as well as to identify representative examples of current land-cover and land-use assemblages. Meanwhile, the development of extremely efficient clustering algorithms has become increasingly important in the world of computer science, in which billions of pieces of information on the internet are continually sifted for meaning for a vast variety of applications. One recently developed clustering algorithm quickly groups large numbers of items of any type in a given data set while simultaneously selecting a representative—or “exemplar”—from each cluster. In this context, the availability of both advanced data processing methods and a nationally available set of landscape metrics presents an opportunity to identify sets of representative landscapes to better understand landscape pattern, variation, and distribution across the forested area of Canada. In this research, we first identify and provide context for a small, interpretable set of exemplar landscapes that objectively represent land cover in each of Canada’s ten forested ecozones. Then, we demonstrate how this approach can be used to identify flagship and satellite long-term study areas inside and outside protected areas in the province of Ontario. These applications aid our understanding of Canada’s forest while augmenting its management toolbox, and may signal a broad range of applications for this versatile approach
    corecore