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Abstract: In the present study, the influences of the bearing clearance, which is a 
common fault for machines, to the chatter stability of milling process are examined by 
using numerical simulation method. The results reveal that the presence of bearing 
clearance could make the milling process easier to enter the status of chatter 
instability and can shift the chatter frequency. In addition, the spectra analysis to 
vibration signals obtained under the instable milling processes show that the presence 
of bearing clearance could introduce more frequency components to the vibration 
responses but, however, under both the stable and instable milling processes, the 
generated frequency components will not violate the ideal spectra structures of the 
vibration responses of the milling process, which are usually characterized by the 
tooth passing frequency and its associated higher harmonics for the stable milling 
process and by the complex coupling of the tooth passing frequency and the chatter 
frequency for the instable milling process. This implies that, even under the case with 
bearing clearance fault, the stability of the milling process can still be determined by 
viewing the frequency spectra of the vibration responses. Moreover, the phenomena 
of the chatter frequency shift and the generation of more components provide 
potential ways to detect the bearing clearance in machines.  

1 Introduction 
Chatter is a problem of instability occurring in the metal cutting process [1], 

which is associated with forced and/or self-excited oscillations and usually 
characterized by violent vibration, loud sound and poor quality of surface finish. 



Chatter can cause a life reduction to the tool and affect the productivity by interfering 
with the normal functioning of the machine process. The problem has been widely 
investigated by manufacturing community and has been a popular topic for academic 
and industrial researches. The pioneering chatter instability models were the 
regeneration theory proposed by Trusty and Polacek [2], and Tobias and Fiswick [3] 
almost at the same period but independent of each other, which now is referred to by 
almost every researcher investigating the chatter instability. The regeneration theory 
has been further developed by many researchers to make it applicable for different 
metal cutting scenarios including turning and boring [4], drilling [5], milling [6] and 
grinding [7] operations. Altintas and Weck [8] have contributed a comprehensive 
review to the fundamental modelling of chatter vibrations and the associated chatter 
stability lobes for the four metal cutting and grinding processes. Efforts have also 
been made to improve the prediction accuracy of the chatter stability by taking into 
account of various factors which are probably encountered in practice, for example 
the influence of structural interfaces on the dynamic stiffness of the machine [9], the 
mode-coupling effect [10], the feed speed variation [11] and the effect of noise 
excitation [12]. In addition, particular attentions have been paid to the vibration 
response of machine tool because monitoring the vibration frequencies during 
machining is an efficient way for identifying machine tool chatter and distinguishing 
between different types of instabilities [13]. During the stable cutting process, the 
vibration signals are usually dominated by the tooth-passing frequency, and although 
the higher harmonics may appear in the vibration signals, the motion would still be 
period-one type [14]. In contrast, during the chatter instable cutting, the machine tool 
can behave with quasi- period motion [14] or even with chaotic motion [15], and the 
vibration signals contain multiple frequencies, which usually are dominated by both 
the tooth-passing frequency and the chatter frequency [14]. The spectra structures of 
the vibration are well defined, and therefore the stable and instable cutting cases can 
clearly be distinguished based on the spectra. However, sometimes the nice structure 
of the chatter frequencies can be influenced or destroyed by several other effects in 
practice, for example the runout [16]~[18] where the geometric axis of the milling 
cutter differs from the rotation axis. The bearing clearance is a common fault for the 
machines, which can lead the machine to complex nonlinear behaviours like quasi-
period motion and chaotic motion [19]-[22]. The appearance of bearing clearance 
fault could considerably deteriorate the performance of machines, and therefore it is 
of significance to investigate the effects of the bearing clearance to the cutting process 
and to inspect the spectra structures of the vibration signals in order to accumulate 
information for the machine condition assessment purpose and also for identifying the 
machine tool chatter under the bearing clearance case.  



In this paper, based on a 2-DOF of milling process model, the effects of the 
bearing clearance to the cutting process is analyzed by comparing the stability lobe 
diagrams and the corresponding response spectra for the milling models with and 
without bearing clearance. The theoretical stability lobe for the milling model without 
bearing is also calculated using the method proposed by Opitz [23]. The frequency 
components that arise due to bearing clearance are clearly identified. This provides 
useful information to determine if the bearing clearance and chatter are present.  

2 Model of Milling Process 

The 2-DOF model of a workpiece-tool system with bearing clearance is 
illustrated in Fig 1. The feed direction and spindle rotation are shown for an up-
milling operation. The tool is represented by an equivalent two-degree-of-freedom 
spring-mass-damper system, and the workpiece is assumed to be rigid, and the effect 
of the bearing clearance is modelled using the discontinuous stiffness model which 
has been discussed in [20] and [22]. The 2-DOF oscillator with bearing clearance is 
excited by the cutting force, and the governing equation can be written in the 
following equation. 
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where x and y are the displacement of the cutter-head in X- and Y- directions 

respectively, and 22 yxD += , Dx /)cos( =ϕ , Dy /)sin( =ϕ , and γ is the radial 

clearance of the bearing, and )(•δ  is a switch function with 1)( =∆δ  if 0≥∆  and 
0)( =∆δ  for others. )(tFx  and  )(tFy  are the cutting force at time t in X- and Y- 

directions. The system described by Eq. (1) is a typical non-linear dynamic system 
with discontinuous stiffness characteristics.  

[Fig 1] 

For the cutting process study, one key problem is about the modelling of the 
cutting force. Assuming that the number of teeth in the cutter head is N and the 
spindle speed is Ω, the tooth passing period τ is equal to  

Ω
=

N
1τ                                                 (2) 

Referring to Fig 1, the ith tooth is acted upon by an orthogonal force,  ),( tiFr  
which is the feed force in the radial direction, and ),( tiFt  which is the tangential 

cutting component in the direction of cutting speed. Usually, the force is taken 
proportional to the instantaneous chip thickness and the chip thickness direction is 
perpendicular to the cut surface, as proposed by Koenigsberger et al [24].  Thus  
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where tk  is the specific cutting energy, and nk  is the ratio of radial to tangential 
cutting forces, a is the axial width of cut, and ),( tih  is the chip thickness for tooth i 

of the cutter at time t, which consists of a static part due to the rigid body motion of 
the cutter-head and a dynamic component caused by vibrations of the cutter-head at 
the present and previous tooth periods and can be determined from  

),(cos)(),(sin)(),( ittyittxtih θθ ∆+∆=                                      (4) 

where )(tx∆  and )(ty∆  are given by  
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and ),( itθ is the angular position of tooth i at time t and is given by   

0
2)1(2),( θππθ +−−Ω=
N

itit                                                  (6) 

and 0θ  is the initial angular position of the first tooth.  

From Eq. (3), the cutting force in the feed and normal direction can be solved 
as follows: 
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where 
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After carrying out a summation of the forces over the N teeth, one can obtain 
the following expressions for the net force components: 
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The function )),(( itg θ  is a screen function, and it is equal to 1 if the ith tooth 
is cutting or 0 when not cutting: 
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where exφ  and stφ  are the exit and start angles. Substituting Eq.s (4)~(8) into (9) 
yields 
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where 
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As the cutter-head rotates, the directional factors Aii in Eq. (12) vary with time. 
However, the matrix is period at tooth passing frequency (ω = NΩ) when the 
workpiece is continuously engaged by the cutter.  

3 Chatter Stability Lobes 

3.1 Linear Chatter Stability Theory 
When the bearing clearance is free for the milling process, then Eq. (1) can be 

simplified to be 
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and, according to the chatter theory presented in [23],  both the vibration components 
)(tx∆  and )(ty∆  are dominated by the chatter vibration frequency cω , and so the 

resultant cutting force can be expressed as tj
xx

ceFtF ω=)(  and tj
yy

ceFtF ω=)( . 

Therefore, the vibrations at present time t and previous tooth τ−t  can be determined 
as  
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(14) 

where XΦ  and YΦ  are direct frequency response functions in X- and Y- directions 

respectively, which can be calculated directly from Eq. (13). 
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For simplicity, it is assumed that only one tooth is acting on the workpiece, 
and then the cutting forces at tow directions are determined as 
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The chip thicknesses then can be calculated as  
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As the static chip load τv  does not affect the critical stability of the dynamic 
machine system and so it can be ignored in the stability analysis, then substituting Eq. 
(17) into Eq. (4) yields 
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where )( cc jωΦ  is the oriented transfer function and can be calculated as 

( ) ( )[ ]ψθθωψθθωω −Φ−−Φ=Φ sincos)(cossin)()( cYcXcc jjj        (19) 

Generally, the oriented transfer function can be determined for multiple teeth 
cases by the approach proposed by Opitz [23] as follows 
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The average of dynamic chip thickness leads to mean dynamic resultant 
cutting force as follows 

)()1(1 2
cc

tjj
nt

tj jFeekakFe ccc ωωτωω Φ−+= −                      (22) 

From Eq. (22), the chatter stability lobes of the milling process can be 
estimated by solving the following characteristic equation 
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where lima  is the maximum axial width of cut for chatter vibration free machining. 

From the characteristic Eq. (23), the stability lobes are then solved as 
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where T  is the tooth passing period, n [rev/min] is the spindle speed. 



3.2 Nonlinear Effects in Milling Process 

 Although the above linear stability theory could predict most of important 
phenomena in cutting dynamics, in recent years there has been a resurgence of 
interesting in modelling milling process as nonlinear dynamics for a better insight to 
the complex dynamics in cutting materials. Generally speaking, the major nonlinear 
effects on milling dynamics include [25]:  

1) material constitutive relations (stress versus strain, strain rate and 
temperature), 

2) tool-structure nonlinearities, 
3) friction at the tool-chip interface, 
4) loss of tool-workpiece contact, 
5) influences of machine drive unit. 

Most research efforts have usually been made to investigate the first four kinds 
of nonlinear effects [14][25]-[28], and results indicated that such nonlinear cutting 
dynamics could exhibit a global sub-critical Hopf bifurcation (initially super-critical 
and then turning sub-critical at higher vibration amplitudes); on the other hand, few 
researches have been done to the fifth one. The nonlinear cutting process is usually 
investigated by using the following dimensionless dynamic equation 

)()(2 3
3

2
2

23
3

2
2

2  +∆+∆+∆=+++++ fffwpp ααηβηβηηξη        (25) 

This model incorporates both structural ),,( 32 ββ  and material nonlinearities 
),,( 32 αα . As a common fault for machine drive units, the appearance of the bearing 

clearance could cause discontinuously nonlinear stiffness characteristics to entire 
cutting system and so as to deteriorate the machine performance. Essentially, the 
milling process with bearing clearance can be regarded as a specific case of model (25) 
because in mathematics the Weierstrass approximation theorem [29] guarantees that 
any continuous function on a closed and bounded interval can be uniformly 
approximated on that interval by a polynomial to any degree of accuracy. Therefore, 
the restoring force of the spring with discontinuously nonlinear stiffness caused by 
bearing clearance can be approximated as a polynomial function as shown in Fig 2.  

[Fig 2] 

When nonlinearities are considered in the milling process, the linear chatter 
stability theory is no longer valid in determining the chatter stability lobe, and so to 
analyze the nonlinear cutting dynamics researchers often have had to resort to the 
perturbation method and numerical simulation method. In addition, in the linear 
chatter stability study, numerical simulation methods have also been widely used to 
verify the accuracy of various frequency domain stability lobe prediction models like 



the model expressed by Eq. (24).  In this study, the effects of bearing clearance on the 
cutting dynamics are investigated by using numerical simulation method. 

3.3 Effects of Bearing Clearance on the Chatter Stability 
The investigation of the effects of bearing clearance on the chatter stability, 

numerical simulations is conducted using the fourth order Runge-Kutta method. In the 
numerical simulations, the stability limits are obtained by gradually increasing the 
axial width of cut while holding all the other parameters constant until instability 
occurred. This procedure is repeated at different spindle speed to construct the chatter 
stability lobe. In this study, a milling operation that was originally investigated 
numerically by Balachandran [14] is considered here. The cutter-head is assumed to 
have six teeth, and the entry and exit angles exφ , stφ  are 67 o and 139o respectively. 
The specific cutting energy is taken as tk =900 Mpa, and the proportionality factor nk  

is 0.3, and the constant feed speed v is 0.5×10-5 m / teeth. The modal parameters about 
the cutter-head are given in Table 1.  

[Fig 3] 

[Fig 4] 

Table 1. Modal parameters of the cutter-head 

 Mass  
(kg) 

Stiffness (k1+k2)  
(N/m) 

Damping Ratio  
(%) 

X 2.75×10-2 8.79×105 1.39 
Y 2.96×10-2 9.71×105 1.38 

 

In Fig 3, the results show the comparison between the stability lobes which are 
obtained by the method presented as Eq. (24) and by the time domain simulation 
respectively. Basically, the comparisons between the two results are good, especially 
in the regions between the peaks. As there is no well-established method available to 
theoretically analyze the chatter stability of the system described as Eq. (1) where the 
effects of the bearing clearance are taken into account, only the time domain 
simulation method is used to predict the stability lobe. When the bearing clearance is 
considered, the stiffness variety due to the clearance is taken as 12 5.0 xx kk =  and 

12 5.0 yy kk = , the radial clearance γ is 5μm and it is assumed that the presence of 

clearance will not affect the system damping. Fig 4 shows the stability lobes, which 
are predicted by the time domain simulation for with clearance and without clearance. 
The comparisons between the two stability lobes especially at the region around the 
lobe where k = 1 clearly indicate that the presence of the bearing clearance has 
reduced the dominant chatter frequency and the limit of the axial width of cut, and an 



obvious leftward shift of the lobes can be observed. The reducing of the chatter 
frequency and the cutting width limit can be easily explained as it is known that the 
presence of bearing clearance in a machine could introduce the stiffness decrease to 
the whole machine system, and consequently reduce the natural frequencies of the 
machine system. The stiffness decrease would make it easier for the machine to enter 
the status of chatter instability. 

4 Steady-State Response Analysis 

The steady-state vibration response analysis has always played very important 
role in monitoring the condition of the milling process to prevent the machine from 
the damage due to the chatter instability. It has been known that, in the case of bearing 
clearance free, if there is no chatter instability happening [14], the principal period is 
equal to the tooth passing period τ, and the vibrations are periodic-one type and the 
ideal vibration frequencies can be determined as 

60
Ω

=
kNf  [Hz]                            k=0; ±1; ±2,… (26) 

When the chatter instability happens, the type of stability loss will correspond 
to the secondary Hopf bifurcation of periodic systems, and quasi-periodic vibrations 
[14] will arise, and the corresponding vibration frequencies are 
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The nice spectra structures of the vibration provide convenient methods to 
identify the stable and instable cutting cases. In this section, the numerical simulation 
method will be used to verify the spectra structures. Moreover, the influence of 
bearing clearance to the vibration spectra structures of the milling process is also 
investigated. The milling processes at two different spindle speeds 3720 rpm and 
9000 rpm are considered for different scenarios, i.e. the cutting process is stable or 
instable, and the bearing clearance is free or presents.  

The first scenario considered is the stable milling processes at the spindle 
speed 3720 rpm. The axial width of cut a is taken as 0.08 mm. From the stability 
lobes shown in Fig 4, it can be known that the milling processes are stable for all the 
cases with and without bearing clearance. The simulation results including the 
sampled vibration signals at both the X- and Y- directions, the cutter-head orbit 
constructed from the vibration signals and the FFT spectra of the vibration signals are 
all presented. In addition, in order to clearly show the period one and quasi-periodic 
vibrations, the Poincaré sections are also plotted together with the orbits. The 



Poincaré sections can be obtained by plotting the stroboscopically sampled data in the 
x-y plane.   

[Fig 5] 

Fig 5 shows the results obtained under the case without bearing clearance for 
the first scenario. It is a stable milling process where the dominant peak in the FFT 
spectra is at the tooth passing frequency fΩ = N×Ω/60 = 372 Hz. Although the FFT 
spectra have higher harmonics, the cutter-head orbit and the Poincaré section clearly 
show a period-one motion. Obviously, the spectra are also consistent with the 
frequency structure determined by Eq. (26).  

[Fig 6] 
The results shown in Fig 6 are obtained under the case with bearing clearance. 

By comparing the results shown Fig 5, it can be found that there is no significant 
difference caused by the bearing clearance when the milling process is stable. The 
cutter-orbit and the Poincaré section clearly show the motion is still period-one type. 
The spectra also indicate that the dominant peak is still the component at the tooth 
passing frequency. As many researches have revealed, the discontinuous nonlinearity 
like the stiffness change due to bearing clearance can introduce higher harmonics to 
the force responses for the systems subjected to harmonic forces. Therefore, the 
spectrum structure of the bearing clearance fault is coincident with the frequency 
structure of the stable milling process and, therefore, in this case, it is difficult to 
distinguish between the cases with bearing clearance and without bearing clearance 
from the frequency spectra under the stable cutting. Having a closer comparison 
between the vibration signals under the cases with and without bearing clearance, it 
can be seen that the amplitudes of the vibration signals with bearing clearance are 
relatively bigger than those without bearing clearance, and the associated second 
harmonics also become larger. The increasing vibration intensity caused by the 
presence of bearing clearance can certainly reduce the quality of the finished surface 
and, however, these tiny differences might be able to provide a way to detect the 
bearing clearance fault in machines, but which would be not very effective.  

[Fig 7] 
[Fig 8] 

The scenarios shown in Fig 7 and Fig 8 are corresponding to chatter instable 
milling processes without and with bearing clearance respectively. The cutter-head 
orbits and the associated Poincaré sections, the shapes of which are close ring, all 
clearly indicate that the cutter-heads are acting with quasi-periodic motions. For the 
case without bearing clearance, besides the component at the tooth passing frequency 
fΩ and it associated higher harmonics, there are extra peaks appearing in the response 
spectra. In the spectrum of the vibration signal in X-direction, the dominant 



component is 915Hz, which actually is the chatter frequency fc = ωc/2π. There are 
even richer frequency components appearing in the spectrum of the vibration signal in 
Y-direction, i.e. fc - fΩ = 543Hz and fc - 2fΩ = 171Hz. It can be known that the 
frequency structure of vibration signals satisfy that determined by Eq. (27). In the 
results shown in Fig 8, the chatter frequency fc is determined as 940Hz, which is 
bigger than the chatter frequency under the case without bearing clearance. Moreover, 
it can be seen that, comparing to the spectra of the vibration signals obtained under 
the case without bearing clearance, besides for the components fc - fΩ = 568Hz and fc - 
2fΩ = 196Hz, more frequency components arise in the spectra of the vibration signals 
with bearing clearance, i.e. the frequency components 3fΩ - fc = 176Hz, 4fΩ - fc = 
548Hz and 5fΩ - fc = 920Hz. It is quite clearly that, under the instable milling process, 
the presence of the bearing clearance can not only shift the chatter frequency but also 
excite more frequency components. The shift of the chatter frequency and the 
generation of more frequency components caused by the bearing clearance to the 
instable milling process provide a more effective method than inspecting the 
amplitude of the second harmonic to detect the presence of bearing clearance in 
machines. It is worth noting here that, comparing the frequency components of the 
vibration signals for the bearing clearance case with the spectra structure defined by 
Eq. (27), it can be easily seen that the extra frequency components introduced by the 
bearing clearance are still contained in the spectra structure determined by Eq. (27). 
This implies the presence of bearing clearance will not make the vibration signal 
under the instable milling process to violate the well defined spectra structures, and 
therefore the stable and instable cutting processes can still be distinguished based on 
the vibration spectra. 

[Fig 9] 

[Fig 10] 

The results shown in Fig 9 and Fig 10 are also obtained under the chatter 
instable milling processes without and with bearing clearance respectively, but the 
spindle speed is 9000rpm. Again, the cutter-head orbits and the ring-type Poincaré 
sections all indicate that the cutter-heads are acting with quasi-periodic motions. From 
the spectra shown in Fig 9 (C), it can be seen that the chatter frequency component fc 
= 526Hz only appears in the vibration signal in Y-direction, and the vibration signal 
in X-direction is a pure sinusoidal signal whose frequency is determined as 900 Hz, 
which is the tooth passing frequency. This implies that although the entire milling 
process is chatter instable but, strictly speaking, the instable motion only happens in 
Y-direction. The motion difference between X- and Y-direction is due to the 
asymmetric of the cutter-head as the modal parameters shown in Table 1 indicate. In 



addition, it can also be seen that the spectrum structure of the vibration signal in Y-
direction is consistent with the spectra structure defined by Eq. (27). The results 
shown in Fig 10 are obtained under the case with bearing clearance. Obviously, the 
chatter frequency components arise in all the spectra of the vibration signals in both 
directions, which mean, in this case, the motions in both directions are chatter instable. 
Comparing with the instable motion only in X-direction under the bearing clearance 
free case, in certain sense, the instable motions in both directions indicate that the 
presence of bearing clearance could make the milling process easier to enter the 
instable status. From the spectra in Fig 10(C), the chatter frequency in the case with 
bearing clearance is determined as 524Hz, which is different from the 526Hz 
component in the case without bearing clearance. Moreover, obviously, more 
frequency components have arisen in the spectra, i.e. 2fc - fΩ = 148Hz, 3fc - fΩ = 672Hz, 
fc + fΩ = 1424Hz and 2(fΩ - fc) = 752Hz. Clearly, the spectra structures under the case 
with bearing clearance still satisfy the well defined spectra structures given by Eq. 
(27). Once again, the spectra structures of the vibration signals obtained under spindle 
speed = 9000 rpm indicate that, even under the bearing clearance case, the stable and 
instable cutting processes can still be distinguished based on the vibration spectra.  

5 Conclusions 

Bearing clearance is a common fault for machines, which can deteriorate the 
performance of machines. In the present study, by using a discontinuous stiffness 
model to represent the effects of the bearing clearance, the influences of the bearing 
clearance to the chatter stability of milling process have been examined though 
numerical simulation method. The chatter lobes determined by numerical simulations 
reveal that the bearing clearance can reduce the dominant chatter frequency and the 
limit of the axial width of cut so that the milling process with bearing clearance would 
more easily enter the instable cutting than that without bearing clearance. Moreover, 
when the chatter instability happens during the milling process, the presence of the 
bearing clearance can shift the chatter frequency. In addition, the spectra structures of 
vibration signals obtained under both the stable and instable milling process have 
been inspected, and the results show that the presence of bearing clearance could 
introduce more frequency components to the vibration responses. However, under 
both the stable and instable milling processes, the bearing clearance will not make the 
frequency structures of the vibration signals violate the ideal spectra structures of the 
vibration responses of the usual milling process. This means that, even under the case 
with bearing clearance fault, the stability of the milling process can still be determined 
by viewing the frequency spectra of the vibration responses. Moreover, the 



phenomena of the chatter frequency shift and the generation of more components can 
be regarded as the fault features of the bearing clearance. 
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Fig 1 The model of milling process with bearing clearance 
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Fig 2, the polynomial approximation of the restoring force of a spring with 

discontinuous stiffness 
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Fig 3,  The stability lobes [– : predicated by Eq. (19); + : predicated by time domain 
simulation] 
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Fig 4, The stability lobes [+: without bearing clearance; ○: with bearing clearance] 
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Fig 5, the results for the stable scenario at speed 3720 rpm and without bearing 
clearance [the sampled vibration signals (A), and the cutter-head orbit along with 

Poincaré section (B), and the FFT spectra (C)] 
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Fig 6, the results for the stable scenario at speed 3720 rpm and with bearing clearance 
[the sampled vibration signals (A), and the cutter-head orbit along with Poincaré 

section (B), and the FFT spectra (C)] 
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Fig 7, the results for the instable scenario at speed 3720 rpm and without bearing 
clearance [the sampled vibration signals (A), and the cutter-head orbit along with 

Poincaré section (B), and the FFT spectra (C)] 
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Fig 8, the results for the instable scenario at speed 3720 rpm and with bearing 
clearance [the sampled vibration signals (A), and the cutter-head orbit along with 

Poincaré section (B), and the FFT spectra (C)]
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Fig 9, the results for the instable scenario at speed 9000 rpm and without bearing 
clearance [the sampled vibration signals (A), and the cutter-head orbit along with 

Poincaré section (B), and the FFT spectra (C)] 
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Fig 10, the results for the instable scenario at speed 9000 rpm and with bearing 
clearance [the sampled vibration signals (A), and the cutter-head orbit along with 

Poincaré section (B), and the FFT spectra (C)] 
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