108 research outputs found

    The Easy Expensive Way Doesn\u27t Work. Why Not Try the Difficult Cheap Way?

    Get PDF
    Smokestack chasing and related ad hoc efforts to create techno/commercial clusters are examples of failed economic development activities, because they are generally poorly integrated into the networks of interactions that support a local, state, or national economy. This is a general problem because it is difficult to characterize and understand such complex webs of interactions. Thus, it is the dynamic complexity of combined state innovation systems, related policy systems, and the broader economy that stands between state governors and legislators, their piecemeal enactment of ‘economic development initiatives’, and the economic growth they desire. This brief describes the social, governmental, and commercial network structures involved in the innovation economy, and then examines several simple but powerful approaches states might utilize to manage and strengthen their innovation systems. Further down the road, the hard part involves finding ways to apply complexity theory and tools in a predictive manner to evaluate possible network interventions. At least at the beginning, network interventions are much cheaper than the direct and indirect costs of today’s incentive- and investment-based approaches

    Defective Tmprss3-Associated Hair Cell Degeneration in Inner Ear Organoids

    Get PDF
    Mutations in the gene encoding the type II transmembrane protease 3 (TMPRSS3) cause human hearing loss, although the underlying mechanisms that result in TMPRSS3-related hearing loss are still unclear. We combined the use of stem cell-derived inner ear organoids with single-cell RNA sequencing to investigate the role of TMPRSS3. Defective Tmprss3 leads to hair cell apoptosis without altering the development of hair cells and the formation of the mechanotransduction apparatus. Prior to degeneration, Tmprss3-KO hair cells demonstrate reduced numbers of BK channels and lower expressions of genes encoding calcium ion-binding proteins, suggesting a disruption in intracellular homeostasis. A proteolytically active TMPRSS3 was detected on cell membranes in addition to ER of cells in inner ear organoids. Our in vitro model recapitulated salient features of genetically associated inner ear abnormalities and will serve as a powerful tool for studying inner ear disorders

    Investigation of the Epitaxial Graphene/p-SiC Heterojunction

    Full text link
    There has been significant research in the study of in-plane charge-carrier transport in graphene in order to understand and exploit its unique electrical properties; however, the vertical graphene–semiconductor system also presents opportunities for unique devices. In this letter, we investigate the epitaxial graphene/p-type 4H-SiC system to better understand this vertical heterojunction. The I–V behavior does not demonstrate thermionic emission properties that are indicative of a Schottky barrier but rather demonstrates characteristics of a semiconductor heterojunction. This is confirmed by the fitting of the temperature-dependent I–V curves to classical heterojunction equations and the observation of band-edge electroluminescence in SiC

    The DEEP Groth Strip Survey VI. Spectroscopic, Variability, and X-ray Detection of AGN

    Get PDF
    We identify active galactic nuclei (AGN) in the Groth-Westphal Survey Strip (GSS) using the independent and complementary selection techniques of optical spectroscopy and photometric variability. We discuss the X-ray properties of these AGN using Chandra/XMM data for this region. From a sample of 576 galaxies with high quality spectra we identify 31 galaxies with AGN signatures. Seven of these have broad emission lines (Type 1 AGNs). We also identify 26 galaxies displaying nuclear variability in HST WFPC2 images of the GSS separated by ~7 years. The primary overlap of the two selected AGN samples is the set of broad-line AGNs, of which 80% appear as variable. Only a few narrow-line AGNs approach the variability threshold. The broad-line AGNs have an average redshift of z~1.1 while the other spectroscopic AGNs have redshifts closer to the mean of the general galaxy population (z~0.7). Eighty percent of the identified broad-line AGNs are detected in X-rays and these are among the most luminous X-ray sources in the GSS. Only one narrow-line AGN is X-ray detected. Of the variable nuclei galaxies within the X-ray survey, 27% are X-ray detected. We find that 1.9+/-0.6% of GSS galaxies to V=24 are broad-line AGNs, 1.4+/-0.5% are narrow-line AGNs, and 4.5+/-1.4% contain variable nuclei. The fraction of spectroscopically identified BLAGNs and NLAGNs at z~1 reveals a marginally significant increase of 1.3+/-0.9% when compared to the local population.Comment: 29 pages, 8 figures, accepted for publication in ApJ

    Class IA PI3Kinase Regulatory Subunit, p85α, Mediates Mast Cell Development through Regulation of Growth and Survival Related Genes

    Get PDF
    Stem cell factor (SCF) mediated KIT receptor activation plays a pivotal role in mast cell growth, maturation and survival. However, the signaling events downstream from KIT are poorly understood. Mast cells express multiple regulatory subunits of class 1A PI3Kinase (PI3K) including p85α, p85β, p50α, and p55α. While it is known that PI3K plays an essential role in mast cells; the precise mechanism by which these regulatory subunits impact specific mast cell functions including growth, survival and cycling are not known. We show that loss of p85α impairs the growth, survival and cycling of mast cell progenitors (MCp). To delineate the molecular mechanism (s) by which p85α regulates mast cell growth, survival and cycling, we performed microarray analyses to compare the gene expression profile of MCps derived from WT and p85α-deficient mice in response to SCF stimulation. We identified 151 unique genes exhibiting altered expression in p85α-deficient cells in response to SCF stimulation compared to WT cells. Functional categorization based on DAVID bioinformatics tool and Ingenuity Pathway Analysis (IPA) software relates the altered genes due to lack of p85α to transcription, cell cycle, cell survival, cell adhesion, cell differentiation, and signal transduction. Our results suggest that p85α is involved in mast cell development through regulation of expression of growth, survival and cell cycle related genes

    Broad-Scale Recombination Patterns Underlying Proper Disjunction in Humans

    Get PDF
    Although recombination is essential to the successful completion of human meiosis, it remains unclear how tightly the process is regulated and over what scale. To assess the nature and stringency of constraints on human recombination, we examined crossover patterns in transmissions to viable, non-trisomic offspring, using dense genotyping data collected in a large set of pedigrees. Our analysis supports a requirement for one chiasma per chromosome rather than per arm to ensure proper disjunction, with additional chiasmata occurring in proportion to physical length. The requirement is not absolute, however, as chromosome 21 seems to be frequently transmitted properly in the absence of a chiasma in females, a finding that raises the possibility of a back-up mechanism aiding in its correct segregation. We also found a set of double crossovers in surprisingly close proximity, as expected from a second pathway that is not subject to crossover interference. These findings point to multiple mechanisms that shape the distribution of crossovers, influencing proper disjunction in humans

    Aerosol and droplet generation from orbital repair: Surgical risk in the pandemic era

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Introduction The highly contagious COVID-19 has resulted in millions of deaths worldwide. Physicians performing orbital procedures may be at increased risk of occupational exposure to the virus due to exposure to secretions. The goal of this study is to measure the droplet and aerosol production during repair of the inferior orbital rim and trial a smoke-evacuating electrocautery handpiece as a mitigation device. Material and methods The inferior rim of 6 cadaveric orbits was approached transconjunctivally using either standard or smoke-evacuator electrocautery and plated using a high-speed drill. Following fluorescein inoculation, droplet generation was measured by counting under ultraviolet-A (UV-A) light against a blue background. Aerosol generation from 0.300–10.000 μm was measured using an optical particle sizer. Droplet and aerosol generation was compared against retraction of the orbital soft tissue as a negative control. Results No droplets were observed following the orbital approach using electrocautery. Visible droplets were observed after plating with a high-speed drill for 3 of 6 orbits. Total aerosol generation was significantly higher than negative control following the use of standard electrocautery. Use of smoke-evacuator electrocautery was associated with significantly lower aerosol generation in 2 of 3 size groups and in total. There was no significant increase in total aerosols associated with high-speed drilling. Discussion and conclusions Droplet generation for orbital repair was present only following plating with high-speed drill. Aerosol generation during standard electrocautery was significantly reduced using a smoke-evacuating electrocautery handpiece. Aerosols were not significantly increased by high-speed drilling

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe
    corecore