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SUMMARY
Mutations in the gene encoding the type II transmembrane protease 3 (TMPRSS3) cause human hearing loss, although the underlying

mechanisms that result in TMPRSS3-related hearing loss are still unclear. We combined the use of stem cell-derived inner ear organoids

with single-cell RNA sequencing to investigate the role of TMPRSS3. Defective Tmprss3 leads to hair cell apoptosis without altering

the development of hair cells and the formation of the mechanotransduction apparatus. Prior to degeneration, Tmprss3-KO hair cells

demonstrate reduced numbers of BK channels and lower expressions of genes encoding calcium ion-binding proteins, suggesting a

disruption in intracellular homeostasis. A proteolytically active TMPRSS3 was detected on cell membranes in addition to ER of cells in

inner ear organoids. Our in vitro model recapitulated salient features of genetically associated inner ear abnormalities and will serve as

a powerful tool for studying inner ear disorders.
INTRODUCTION

Auditory and vestibular systems share numerousmolecular

constituents, as well as a common molecular evolution,

although these systems differ in their structure, cellular

components, and physiological properties (Fritzsch and

Straka, 2014; Gillespie and Muller, 2009). Defects in the

conserved features may consequently impair both hearing

and balance (Keats and Corey, 1999; Shinjo et al., 2007;

Zhou et al., 2009). One such family of molecules includes

type II transmembrane serine proteases, which are classi-

fied by their N-terminal anchor to membranes and contain

an active C-terminal serine protease domain (Barre et al.,

2014; Szabo and Bugge, 2011). One such type II transmem-

brane serine protease, TMPRSS3, is required for proper

mammalian hearing, and mutations in TMPRSS3 cause

congenital and early-onset hearing loss (Scott et al.,

2001). Indeed, large-scale sequencing projects investi-

gating the genetic etiology of deafness revealed that �9%

of genetic-associated hearing loss cases are due to muta-

tions in TMPRSS3 (Bademci et al., 2016; Sloan-Heggen

et al., 2016).

Our current understanding of the role of TMPRSS3 in the

pathobiology of deafness comes from studies on mice

harboring a nonsensemutation in Tmprss3 (Tmprss3Y260X),

which results in a truncated protease domain (Fasquelle

et al., 2011). These mice display normal cochlear and

vestibular hair cells (HCs) in the early postnatal period fol-

lowed by rapid cochlear HC degeneration starting on post-

natal day 12 (P12) (Fasquelle et al., 2011). In addition,

Tmprss3 mutant mice display saccular abnormalities as

well as aberrant vestibular function (Fasquelle et al.,

2011). Despite these observations, the cellular function of
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TMPRSS3 and the mechanisms underlying HC degenera-

tion have yet to be elucidated.

Previously, TMPRSS3 was implicated in regulating both

epithelial sodium channels (ENaC [Guipponi et al.,

2002]) and potassium calcium-activated channel subfamily

M alpha 1 (KCNMA1 [Molina et al., 2013]). However, pseu-

dohypoaldosteronism type I patients with defective ENaC

in the cochlea have normal hearing (Peters et al., 2006).

This suggests that while TMPRSS3 might contribute to

ENaC regulation, TMPRSS3-mediated ENaC dysfunction

is not the primary mechanism underlying auditory and

vestibular dysfunction.

In recent years, organoid cultures have gained accep-

tance as in vitro models of various organ systems. They

offer the advantages of scalability, accessibility, and the

capacity for rapid and precise genetic manipulation in

the laboratory. To better understand the defective

Tmprss3-implicated HC degeneration, we capitalized on

the stem cell-derived three-dimensional inner ear orga-

noid system (Koehler et al., 2013; Liu et al., 2016), which

features HCs characterized by the same structural and

functional properties of vestibular HCs. Upon using

this system, Tmprss3 mutations resulted in HC apoptosis

in both mouse vestibular sensory epithelia (in vivo) and

inner ear organoids (in vitro); such congruency signifies

that stem cell-derived inner ear organoids can recapitu-

late gene mutation-associated pathological features

in vivo. The level of HC degeneration was dependent on

the nature of the mutation (and consequently the struc-

ture of the resulting TMPRSS3 protein). Furthermore, we

also revealed a previously undocumented subcellular

localization of TMPRSS3. In combination with single-

cell RNA sequencing (scRNA-seq) data, we propose
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Figure 1. Normal Development and Formation of Hair Cells in Both Wild-Type and Tmprss3 Mutant Inner Ear Organoids
(A) Schematic diagram of the derivation of mouse embryonic stem cells (mESCs) from wild-type (WT) (Tmprss3WT) and Tmprss3Y260X mice.
TMPRSS3 protein domains are shown for both WT and Y260X mutants.
(B) Schematic diagram of the induction of inner ear organoids from mESCs. Three major time points (day 8 [D8], D14, and RD18) for
checking the development of inner ear organoids are denoted by key molecular markers.
(C and D) Representative images of ECAD and PAX8 staining in D8 aggregates. White arrowheads indicate the ECAD+PAX8+ otic-epibranchial
placode domain.
(E and F) SOX2+ and PAX2+ otic prosensory vesicles in D14 aggregates.
(G and H) Otic vesicles in D18 aggregates. MYO7A+ hair cells (HC) and SOX2+ supporting cells are also evident. White dashed lines encircle
the sensory epithelium.

(legend continued on next page)
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several potential roles of TMPRSS3 in HC degeneration.

These findings highlight the unique advantages in using

organoid systems to model disease mechanisms and have

improved our understanding of the role of TMPRSS3 in

the inner ear.
RESULTS

TMPRSS3 Protease Activity Is Not Required for Proper

Inner Ear Organoid Development

To establish the stem cell-derived inner ear organoidmodel

of Tmprss3 dysfunction, we began by comparing the path-

ological effects ofTmprss3mutations inHCs between a pre-

viously generated mouse model (Fasquelle et al., 2011) and

inner ear organoids. Tmprss3 mutant mice (Tmprss3Y260X)

carrying a nonsense mutation, which results in a truncated

protease domain (Figure 1A), were used as the in vivo coun-

terparts. We derived mouse embryonic stem cell (mESC)

lines from both wild-type (WT; Tmprss3WT) and mutant

Tmprss3Y260X mice on the same C3HeB/FeJ background

strain (Figure 1A). After characterization, we selected a

WT (C3H-WT) and a mutant (C3H-Y260X) cell line, and

the pluripotency of these mESC lines were verified using

three pluripotency markers: OCT3/4, NANOG, and SOX2

(Figure S1).

Inner ear organoids were derived from both C3H-WT

and C3H-Y260X, and the development of organoids

was checked with specific molecular markers at three

key time points (Figure 1B) based on the previous study

by Koehler et al. (2013). Both C3H-WT and C3H-Y260X

ESC lines generated PAX8+ECAD+ otic-epibranchial pla-

code domains (OEPD) on culture day 8 (D8) (Figures 1C

and 1D), followed by PAX2+SOX2+ otic prosensory vesi-

cles on D14 (Figures 1E and 1F). On D18, otic vesicles

containing MYO7A+ HCs and SOX2+ supporting cells

(SCs) were observed in both C3H-WT and C3H-Y260X or-

ganoids (Figures 1G and 1H). Hair bundles (HBs), unique

structures composed of ACTIN-based stereocilia, were

visible in both C3H-WT and C3H-Y260X HCs (Figures

1I and 1J). These initial assessments confirmed that the

mESCs derived in this study produced inner ear organo-

ids comparable with those of previous studies and were

suitable for downstream analyses. Moreover, these results

imply that the truncated TMPRSS3 affected neither the

development of inner ear organoids nor the formation

of HCs.
(I and J) Representative images of MYO7A+ HCs with F-ACTIN-based h
(C) to (J) show otic vesicles (n = 15) from three independent experim
lipoprotein a; SRCR, scavenger receptor cysteine-rich; NNE, non-neura
factor b; BMP4, bone morphogenetic protein 4; FGF, fibroblast growth f
S1 and S7.
TMPRSS3 Proteins with Truncated Protease Domains

Result in Elevated Apoptotic Signals in Inner Ear Hair

Cells In Vivo and In Vitro

A previous study demonstrated rapid degeneration in

cochlear HCs between P12 and P14 in Tmprss3Y260X mice

(Fasquelle et al., 2011). According to electrophysiological

data, organoid HCs showed developmental patterns (with

respect to timing and physiology) similar to those of

mice, and HCs on culture days 22–27 demonstrated com-

parable mechanosensitivity to P2–P5 mouse utricle HCs

(Liu et al., 2016). In this study we extended the culture

period to 40 days, which allowed for the growth of HCs

that were equivalent to those of P12–P14 mice. We

analyzed the sensory epithelia for signs of HCdegeneration

both in vivo and in vitro. Consistent with the previous study

(Fasquelle et al., 2011), we observed the loss of HCs in

Tmprss3Y260X cochlea by P14 (Figure S2). Even though

the loss of HCs in vestibular organs was not as prominent

as in the cochlea, significantly elevated signals of the

apoptosis marker cleaved CASPASE 3 (CASP3) were de-

tected in the sensory epithelia of utricles and saccules

of Tmprss3Y260X relative to those of Tmprss3WT on P14

(p < 0.05; Figures 2A–2F). Although there were higher

CASP3 levels in the crista of Tmprss3Y260X versus those of

Tmprss3WT (Figures 2G–2I), this difference was not statisti-

cally significant.

Next, we examined mESC-derived organoids from

these mice for signs of apoptosis and HC degeneration.

Otic vesicles in both C3H-WT and C3H-Y260X organoids

on D28 and D33 were characterized by indistinguishable

levels of CASP3 (Figure S3). However, by D38, signifi-

cantly elevated CASP3 levels were detected in the sensory

epithelia of C3H-Y260X versus C3H-WT (p < 0.05; Fig-

ures 2J–2L). A similar level of increase in CASP3 (�45%)

was measured in otic vesicles and in mouse sensory

epithelia (Figure 2). In summary, defective TMPRSS3

with truncated protease domains lead to elevated

apoptotic signals in sensory epithelia in both mouse

and inner ear organoids at similar stages (P14 versus

D38, respectively).
Tmprss3 Knockout Inner Ear Organoids Undergo

Normal Early Development

In humans, different mutations in TMPRSS3 lead to vari-

able phenotypes (Lee et al., 2003; Weegerink et al., 2011).

We sought to determine the effect of complete loss of
air bundles (HB) in D25 organoids.
ents. Other abbreviations: TM, transmembrane; LDLa, low-density
l ectoderm; PPE, pre-placodal ectoderm; TGFb, transforming growth
actor . Scale bars, 50 mm (C–H) and 10 mm (I and J). See also Figures
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Figure 2. Increase in Signals of the
Apoptotic Marker Cleaved CASPASE-3 in
Inner Ear Sensory Epithelia (Both In Vivo
and In Vitro) with Tmprss3 Mutations
(A–I) Representative images of mouse utricle
(A and B), saccule (D and E), and crista am-
pullaris (G and H) from P14 Tmprss3WT and
Tmprss3Y260X mice, respectively. Quantifica-
tion of the percent of mean (±SEM; n = 6
sensory epithelia) cleaved caspase-3 (CASP3)
fluorescence intensity in Tmprss3Y260X rela-
tive to Tmprss3WT for the utricle (C), saccule
(F), and crista ampullaris (I).
(J and K) Representative images of D38 inner
ear organoids as indicated, with MYO7A and
CASP3 staining. White arrowheads indicate
CASP3+ hair cells.
(L) Percent of mean (±SEM; n = 14 and 16
otic vesicles for C3H-WT and C3H-Y260X,
respectively, from three independent exper-
iments) CASP3 fluorescence intensity of otic
vesicles in C3H-Y260X relative to C3H-WT.
For the quantitative data, raw images
(without any image processing/modifica-
tion) were analyzed with ImageJ (Student’s t
test, *p < 0.05). CASP3 fluorescence in-
tensity of the WT condition was set arbitrarily
at 100%. Scale bars, 25 mm. See also Figures
S2 and S3.
TMPRSS3 on HC development and survival. Furthermore,

due to the lack of a specific TMPRSS3 antibody, the pres-

ence and localization of TMPRSS3 among inner ear cell

types is unclear. To eliminate TMPRSS3 synthesis and

observe gene expression under the endogenous Tmprss3

promoter, we generated a Tmprss3-knockout (KO)/nGFP-

knockin cell line using the commercially available mESC

line R1/E. By using this second ESC line, we sought to verify

whether the phenomena associated with Tmprss3 muta-

tions are comparable across cell lines.

Previously, two Tmprss3 transcript variants (a and f) were

reported (Fasquelle et al., 2011). To knock out both tran-
150 Stem Cell Reports j Vol. 13 j 147–162 j July 9, 2019
scripts and also create a Tmprss3 reporter, we inserted a nu-

clearly localized GFP (2A-nGFP) cassette with a stop codon

in-frame into exon 2 of Tmprss3 (Figure 3A); this resulted in

2A-nGFP being transcribed by the endogenous Tmprss3

promoter (Figure 3A). Correct biallelic insertion of the

2A-nGFP cassette in the mESC Tmprss3 locus was

confirmed by PCR and DNA sequencing (Figures 3B and

3C; Supplemental Information). No off-target indel was

found based onDNA sequencing (Table S1), and the plurip-

otency of the modified mESCs (named ‘‘Tmprss3KO-

GFPKI’’) was verified with pluripotency markers (Figures

3D–3F).



(legend on next page)
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The early development of inner ear organoids in

Tmprss3KO-GFPKI (KO) was examined at three key time

points: D8, D14, and D21 (Figure 1B); R1/E (WT)-derived

organoids served as controls. On D8, PAX8+ECAD+

OEPD was seen in both WT and KO aggregates (Figures

3G and 3H). By D14, aggregates contained PAX2+SOX2+

otic prosensory vesicles (Figures 3I and 3J) followed by

presence of otic vesicles containing MYO7A+ HCs with

SOX2+ SCs and F-ACTIN-based HBs in both WT and KO

organoids on D21 (Figures 3K–3N). FM1-43fx uptake pat-

terns suggested that HCs in both WT and KO (D23) otic

vesicles possessed mechanotransduction channels (Fig-

ures 3O–3Q). Furthermore, protocadherin-15 (PCDH15;

Kazmierczak et al., 2007) and cadherin-23 (CDH23;

Siemens et al., 2004) antibodies (gifts from Dr. Ulrich

Muller) labeled tip links of D23HBs (Figures 3R–3U). These

results signify that complete loss of TMPRSS3 alters

neither the development of otic vesicles nor the formation

of HCs (and their mechanotransduction apparatus) in

inner ear organoids.

Degeneration of Hair Cells in D38 Tmprss3-KO Inner

Ear Organoids

We next examined whether the loss of TMPRSS3 leads to

HC degeneration. Along with GFP and CASP3 staining,

HCs were labeled with the HC marker calretinin, and the

structure of the sensory epithelia was examined by two

conventional SC markers, SOX2 and SOX9 (Mak et al.,

2009; Oesterle et al., 2008). On D28 and D33, the structure

of the otic vesicles, the integrity of the HCs, and the lack of

CASP3 labeling on HCs all pointed to an absence of HC

degeneration in both R1/E (WT) and Tmprss3KO-GFPKI

(KO) organoids (Figures 4A–D0, S4A, and S4B). However,
Figure 3. Normal Development of Inner Ear Organoids and Mecha
Tmprss3KO-GFPKI (KO) Organoids
(A) Schematic diagram for generating a mESC line with Tmprss3 knocko
inserted into the second exon (‘‘exon 2’’) after the start codon and exp
thereby disrupting translation of any Tmprss3 transcript variants.
(B) Gel electrophoresis of PCR products. Green arrows indicate the prim
homology arm regions.
(C) Chromatogram of the region around exon 2 of Tmprss3 with the 2
(D–F) Pluripotency markers as indicated for KO cell line (passage num
(G and H) Representative images of ECAD and PAX8 staining D8 aggrega
domain.
(I and J) SOX2+ and PAX2+ otic prosensory vesicles in D14 aggregate
(K and L) Otic vesicles in D21 organoids. MYO7A+ hair cells (HCs) and
(M and N) MYO7A+ HCs with F-ACTIN-based hair bundles (white hollo
(O) Bright-field image of an opened otic vesicle for the FM1-43fx upt
(P and Q) FM1-43fx uptake via mechanotransduction channels (15-s in
three independent experiments).
(R–U) Representative images of PCDH15 (R and S) and CDH23 (T and
(C) to (N) show otic vesicles (n = 15–20) from three independent exp
and Q), 500 mm (O), and 1 mm (R–U).
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by D38, HCs in KO organoids were disorganized and pre-

sented higher CASP3 signals relative to D38 WT organoids

(Figures 4E–4F0, S4C, and S4D). Because disrupted otic ves-

icles were documented frequently in D38 KO organoids,

such structural aberrancies hindered the measurement of

CASP3 fluorescence intensity in sensory epithelia and led

to highly variable labeling data. Therefore, western blots

were used to quantify the difference in CASP3 levels be-

tween D36 WT and KO organoids (Figures 4G and 4H). A

3-fold increase in CASP3 levels (normalized to b-ACTIN

concentrations) was detected in D36 KO organoids

compared with D36 WT organoids (p < 0.001; Figure 4H).

We also investigated the effects of Tmprss3-KO between

HCs and the surrounding SCs by comparing the percentage

of CASP3+ HCs and CASP3+ SCs in D36 KO organoids (Fig-

ure 4I). A significant difference between the percentage of

CASP3+ HCs (12.3% ± 2.7% SEM) and CASP3+ SCs

(<0.01%) per otic vesicle was seen (p < 0.001), suggesting

that Tmprss3-KO-associated degeneration occurs predomi-

nantly in HCs (and not other sensory epithelia cell types).

Thus, we conclude that Tmprss3-KO leads to severe HC

degeneration by D38 through an apoptosis pathway that

occurs between D33 and D38.

Decreased Presence of BK Channels in Tmprss3-KO

Hair Cells

Previous studies have demonstrated reduced levels of

KCNMA1, which forms the a subunits of a Ca2+-activated

K+ channel called the BK channel (Dworetzky et al., 1994;

Langer et al., 2003), in cochlear HCs of Tmprss3Y260X

mice (Molina et al., 2013). Since BK channels have also

been documented in the vestibular HCs of mammals

(Kong et al., 2005; Schweizer et al., 2009), we sought to
notransduction Apparatus of Hair Cells in Both R1/E (WT) and

ut and GFP knockin (Tmprss3KO-GFPKI). The 2A-nGFP sequence was
ressed using the endogenous promoter and start codon of Tmprss3,

ers used for amplification of the inserted 2A-nGFP-pA cassette and

A-nGFP cassette.
ber 23).
tes. Arrowheads indicate the ECAD+PAX8+ otic-epibranchial placode

s.
SOX2+ supporting cells are evident.

w arrowhead) in D23 organoids.
ake assay. Red dashed lines indicate the sensory epithelium.
cubation) in WT (P) and KO (Q) HCs (n = 5 otic vesicles from each of

U) labeling of tip links in D23 hair bundles.
eriments. Scale bars, 100 mm (D–F), 50 mm (G–L), 10 mm (M, N, P,



Figure 4. Increased Levels of Cleaved
Caspase-3 in D38 Tmprss3KO-GFPKI (KO)
Inner Ear Organoids
(A–F0) Representative images of R1/E (WT)
and KO otic vesicles on various days. Hair
cells (HC) labeled with the HC marker calre-
tinin (CR). Magnified images of the areas
enclosed within the white squares in (A) to
(F) can be found in (A0) to (F0), respectively,
and the white filled and hollow arrowheads
indicate GFP+ HCs and GFP+CASP3+ cells,
respectively. Scale bars, 50 mm (A–F) and
25 mm (A0–F0).
(G and H) Western blot (G) and quantification
(H) of CASP3 level (normalized to b-ACTIN)
in D36 WT and KO organoids. Four experi-
ments were performed and, in each experi-
ment, random pools of 15–20 organoids were
collected for protein extractions.
(I) Percentage of CASP3+ HC and CASP3+ SCs
in D36 KO organoids. n = 25 KO otic vesicles
from three independent experiments.
Error bars in graphs denote ±SEM; Student’s
t test, *p < 0.001. See also Figure S4.
document whether the lack of TMPRSS3 also reduces the

abundance of BK channels in the HCs of inner ear organo-

ids. To avoid the effects caused by apoptosis, rather than

the lack of TMPRSS3, the levels of BK channels were

compared in R1/E (WT) and Tmprss3KO-GFPKI (KO) orga-

noids on D33. BK channels were detected in 66% of all

HCs (marked by MYO7A and BRN3C staining) in WT otic

vesicles (Figures 5A, 5B, and 5E), whereas a significantly

lower percentage (�45%) was observed in D33 KO organo-

ids (p < 0.001; Figures 5C–5E).

Gene Expression Profiles of Inner Ear Organoids in R1/

E and Tmprss3KO-GFPKI

Next, to elucidate the molecular mechanisms underlying

Tmprss3 KO-caused HC degeneration, we carried out
scRNA-seq. We profiled dissociated cells from R1/E (WT)

and Tmprss3KO-GFPKI (KO) organoids at D25 and D35

using droplet microfluidics (103 Genomics Chromium)

to obtain cell-barcoded cDNAs that were sequenced. We

acquired high-quality reads from �8,000–10,000 cells

from both WT and KO across 10–12 inner ear organoids.

We performed unsupervised cell clustering using

t-distributed stochastic neighbor embedding (tSNE). Puta-

tive HC clusters were established based on conventional

HCmarkers, such as TMC1,Myo7a, Pvalb, and Otof (Figures

6A, 6C, and S5A–S5E). Expression of marker genes from

neurons, oligodendrocytes, and epithelial cells was also

observed in other clusters (Figure S5).

In both D25 WT and KO organoids, putative HC clusters

constituted 2% of all cells (Figures S5A and S5B; Table S2).
Stem Cell Reports j Vol. 13 j 147–162 j July 9, 2019 153



Figure 5. Decrease in Hair Cells with BK Channels in D33
Tmprss3KO-GFPKI (KO) Organoids
(A and B) Hair cells (HCs) displaying BK channels in R1/E (WT)
organoids at D33. White dashed lines outline the HCs (B). Scale bar,
25 mm.
(C and D) Reduced number of HCs with BK channels in KO organoids
at D33. The white filled and hollow arrowheads point to HC lacking
BK channels and GFP+ HC, respectively. White dashed lines outline
the HCs (D). Scale bar, 25 mm.
(E) Dot plot of the percentage of HC with BK channels relative to
the total number of HC in organoids (±SEM; n = 19 for WT otic
vesicles and 24 for KO otic vesicles from three independent ex-
periments; Student’s t test, *p < 0.001).
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Although the percentage of cells in the putative HC cluster

decreased to 1.24% in D35 WT organoids, this percentage

was nevertheless 2-fold higher than in the KO (0.67%) at

this time (Table S2). Integrated comparative analyses of

WT and KO were performed with D25 and D35 samples

(Figures 6A, S5E, and S5F), and the ratio of KO/WT in the

D35 HC cluster (0.58) was lower than for D25 (0.76). This

finding is depicted graphically in Figure 6B and suggests

that the HC number decreased at D35 in KO organoids as

a result of Tmprss3-KO.

Statistically over-representation tests were performed us-

ing genes detected in putative HC clusters among the four

samples. Although overall HC gene assembly did not differ

between WT and KO samples from the same culture day,

more genes involved in developmental processes were

documented at the earlier sampling time (Table S3). We

also observed more genes associated with mature HCs

(e.g., Kcna1, Calb2, and Tmc1 [Scheffer et al., 2015]) in

D35 organoids. These data consequently shed light on in-

ner ear organoid development.

To unravel the mechanisms underlying the HC

degeneration that was observed in later cultures, we

examined differences in average gene expression be-

tween D35 WT and D35 KO organoids (Figure 6D and

Table S4). Less than 1% of all detected genes in the pu-

tative HC cluster were differentially expressed (41

differentially expressed genes [DEGs]; Table S4). There

were 22 genes upregulated in the KO (KO-enriched)

and 19 genes downregulated in the KO (KO-reduced).

Integrated pathway analysis (IPA) of the KO-enriched

genes linked to apoptosis while the KO-reduced genes

did not link to a definitive pathway (Figures S5G and

S5H). We also performed function clustering analyses

on all DEGs, but no specific pathway or biological pro-

cess was identified.

Fromprotein-protein interaction analyses, we found that

six DEGs (15%) were previously documented to interact

with KCNMA1 in mouse cochlea (Kathiresan et al., 2009),

and 16 DEGs (39%) encoding proteins interacting with

14-3-3-EPSILON (Figure 6D). Five of KO-reduced genes

encode Ca2+-binding proteins (Figure 6D). Also, a KO-

reduced gene, Sln, encodes sarcolipin, which is a known

Ca2+ regulator in muscle. On the other hand, 12 of the 22

KO-enriched genes encoded proteins that associated with

the extracellular matrix (ECM) (Figure 6D). Taken together,

our results suggest that loss of TMPRSS3 may influence

intracellular Ca2+ homeostasis via its interaction with

KCNMA1. Also, lack of TMPRSS3 might perturb the ECM

in otic vesicles.

Cell Membrane Localization of TMPRSS3

To elucidate the subcellular localization of the TMPRSS3

protein, we constructed N-terminal-tagged 33FLAG



(legend on next page)
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Tmprss3f, and knocked in the construct to the ROSA 26

locus of R1/E (Figures 7A and S6A–S6E); this caused

33FLAG-Tmprss3f to be ubiquitously and constitutively

expressed in all cells. Western blot with an anti-FLAG anti-

body presented a band at approximately 58–60 kDa in

R1/E�33FLAG-Tmprss3f samples but not in R1/E samples

(Figure 7B). In addition, the FLAG antibody recognized a

28-kDa band (Figure 7B), which is similar in size to an

N-terminal fragment of 28.6 kDa after autocleavage at the

predicted serine protease catalytic site of TMPRSS3F (Lee

et al., 2003; Wattenhofer et al., 2005).

During inner ear organoid induction, we noted non-

nuclear staining corresponding to 33FLAG-TMPRSS3F

that was punctate and overlapping with E-cadherin

(ECAD), both localized to the plasma membrane in D14

aggregates (Figures 7C–7D0). Subsequently, we attempted

to determine the localization of 33FLAG-TMPRSS3F in

organoid HCs and found that it also labeled the cell

membrane, as well as in the cytoplasm (Figure S6F). To

improve resolution, we localized 33FLAG-TMPRSS3F on

a monolayer of 33-FLAG-Tmprss3f ESCs, and further

confirmed the localization on cell membranes via the

co-localization of FLAG and phalloidin (F-ACTIN; Fig-

ure 7E). TMPRSS3 was previously reported to localize to

the ER (Guipponi et al., 2008). Therefore, we examined

whether 33FLAG-TMPRSS3F localizes to the ER using

the ER marker CALRETICULIN, and observed partially

overlapping staining (Figure 7F). We also noticed dense

staining in the cytoplasm, potentially in/on the Golgi

apparatus. Staining of Golgi-97 with an anti-FLAG anti-

body revealed overlapped staining (Figure 7G). Quantita-

tive co-localization analyses indicated a positive correla-

tion (Pearson’s correlation) and complete co-localization

(Van Steensel’s cross-correlation functions plots) between

FLAG and F-ACTIN signals (Figure 7H). On the other

hand, Pearson’s correlation coefficient (r) values for

FLAG versus ER and FLAG versus the Golgi apparatus

were 0.306 and 0.364, respectively; however, as the

values were less than 0.5, complete positive co-localiza-

tion was inconclusive. Overall, we showed proteolytic

active TMPRSS3 localized on the cell membrane using

transgenic mESC and inner ear organoid systems.
Figure 6. Comparison of Single-Cell Gene Expression Profiles betw
(A) tSNE plot of D35 WT and D35 KO organoids after integrated compa
cluster.
(B) Top six cluster-defining genes for the putative HC clusters. Speci
2015). Cells from D35 WT and D35 KO strongly expressing these mark
(C) HC markers used to identify the putative HC cluster.
(D) Analyses of difference in average gene expressions in the putati
binding proteins (red), extracellular proteins (yellow), and proteins r
encoding proteins interacting with KCNMA1 and protein EPSILON are
See also Figure S5.
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DISCUSSION

Our findings demonstrate that inner ear organoids recapit-

ulate the in vivo development and pathology of HCs seen in

mice (Tmprss3Y260X). FM1-43fx uptake assay, unlike elec-

trophysiology that examines mechanotransduction func-

tion by deflecting HBs and measuring membrane potential

changes, determines the existence of mechanotransduc-

tion apparatus based on the uptake of dye through chan-

nels within 10–15 s. The similar level of FM1-43fx uptake

in both WT and Tmprss3-KO HCs, as well as the presence

of intact tip link components, suggest that lack of TMPRSS3

does not impede the formation of the mechanotransduc-

tion apparatus as such, TMPRSS3 is not required for devel-

opment nor early mechanotransduction, but rather is inte-

gral to HC survival.

We found increased CASP3 signals in both sensory

epithelia of Tmprss3Y260X and C3H-Y260, as well as in orga-

noids completely lacking TMPRSS3. The elevation of

CASP3 suggests that HC death is a consequence of

apoptosis. The anatomical integrity of HCs lacking

TMPRSS3 protease activity differed from that of cells lack-

ing the protein in its entirety. In D38 Tmprss3KO-GFPKI or-

ganoids HCs were difficult to identify, whereas D38 C3H-

Y260X2 otic vesicles featured distinguishable HCs in the

sensory epithelia. This suggests a genotype-phenotype cor-

relation, which supports previous findings based on hu-

man genetic and patient data in which the phenotypes of

individuals with Tmprss3mutations vary widely according

to genotype variants (Weegerink et al., 2011).

Loss of TMPRSS3-protease activity was previously re-

ported to reduce cellular levels of KCNMA1 (the a subunits

of the BK channel) in mouse cochlear HCs (Molina et al.,

2013). In this study, we observed a significant decrease

in BK channels in KO HCs. Additionally, the reduced

expression of several genes encoding Ca2+-binding pro-

teins and intracellular Ca2+ regulators in D35 KO HCs

via scRNA-seq analyses might be a response to altered

Ca2+ homeostasis due to decreased BK channels. Further-

more, among D35 DEGs in the HC cluster, we identified

six genes that encode proteins known to interact with

KCNMA1 (Kathiresan et al., 2009). 14-3-3-EPSILON,
een R1/E (WT) and Tmprss3KO-GFPKI (KO) Inner Ear Organoids
rative analyses. The red circle indicates the putative hair cell (HC)

fically, Calb2 and Kcna10 are postnatal HC markers (Scheffer et al.,
ers contributing the putative HC cluster in (A) are shown.

ve HC cluster between D35 WT and D35 KO. Genes encoding Ca2+-
esponding extracellular stimuli (blue) are indicated by color. Gene-
circled by red and green, respectively.
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which was reported to interact with multiple DEGs via

protein-protein interaction analyses, was also known to

be the putative protein-binding partner with BK channels

and to affect its expression (Sokolowski et al., 2011). Mice

lacking 14-3-3 ETA (a family member of 14-3-3-EPSILON)

exhibit cochlear HC degeneration via apoptosis (Buret

et al., 2016). Previous studies have demonstrated that in-

hibition of BK channels can cause cell apoptosis (Bortner

and Cidlowski, 2014; Sakai and Sokolowski, 2015).

Although no biological pathways were significantly en-

riched upon analysis of the DEGs, genes involved in

both apoptosis and cell survival were revealed after further

exploring potential interactions using IPA (Figures S5G

and S5H.). Based on these data, one possible mechanism

of HC loss is that defective TMPRSS3 leads to a decrease

in BK channels via interactions with KCNMA1with subse-

quent disruptions in intracellular Ca2+ homeostasis, re-

sulting thereafter in HC apoptosis.

Differential gene expression analyses also showed that

more than half of genes enriched in D35 KO HCs encode

proteins that either regulate or structurally comprise

ECM; this finding could be linked to the subcellular

localization of TMPRSS3 on the cell surface. Although

TMPRSS3 was only reported at ER previously (Guipponi

et al., 2002, 2008), it should be noted that cell membrane

localization is more commonly reported for other mem-

bers of the TMPRSS family (Brunati et al., 2015; Chen

et al., 2010; Tsuji et al., 1991). According to our data

from scRNA-seq and 33FLAG-tagged TMPRSS3F we pro-

posed that, in addition to effects on the Ca2+ homeosta-

sis, TMPRSS3 might also play roles in organization or

regulation of ECM. Indeed, other members of the

TMPRSS family have been shown to undertake multiple

cellular functions in different cellular locations

(Böttcher-Friebertshäuser et al., 2010, 2013; Chen et al.,

2010). Moreover, other yet to be identified protease sub-

strates for TMPRSS3 are likely critical to the survival of

HCs. For example, mutations in TMPRSS1 (also known
Figure 7. Cell-Surface Localization of TMPRSS3
(A) Schematic diagram for generating a mESC featuring N-terminally
(B) Representative western blot image of protein samples from D20 R1
the intact 33FLAG-TMPRSS3F, and the arrow indicates the N-termina
(C–D0) Immunohistochemistry (IHC) images of anti-FLAG and ECAD i
epithelia.
(E) IHC image of anti-FLAG co-localized with F-ACTIN (phalloidin sta
(F) IHC image revealing anti-FLAG and CALRETICULIN (ER marker) sta
(G) IHC image depicting anti-FLAG and Golgi-97 staining. White ar
staining.
(H) Co-localization analysis of anti-FLAG and F-ACTIN staining using JA
plot suggested complete co-localization. Pearson’s coefficient r valu
included.
Scale bars, 25 mm (C–D0) and 10 mm (E–G). See also Figure S6.
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as hepsin) also lead to hearing loss (Guipponi et al.,

2007). Mutations in hepatocyte growth factor (HGF),

which is regulated by TMPRSS1 (Hsu et al., 2012), cause

deafness in humans (DFNB39) (Schultz et al., 2009).

Future studies exploring a similar functional interaction

and other protease substrates of TMPRSS3 in the inner

ear are of consequent need.

There are current limitations of stem cell-derived inner

ear organoids. First, upon further optimizing previously

published protocols (Koehler et al., 2013; Koehler and

Hashino, 2014), we extended the culture time from 30 to

45–50 days; however, organoid integrity became variable

after D38, potentially due to the outgrowth of non-otic

tissues. Therefore, D38 was chosen as the latest sampling

time in this study to avoid any potential artifacts or

degeneration arising from stress associated with long-

term culture. Second, the protocol for inducing organoids

varies across cell lines, and optimization for each cell line

is necessary. Although both C3H- and R1/E-based lines

gave rise to inner ear organoids after optimizing the proto-

col (Figure S7), the induction efficiency among cell lines re-

mains significantly different (the induction efficiency of

R1/E-based cell lines [85%] and C3H-based ones [49%]; t

test, p < 0.05 [three 96-well plate experiments]).

In summary, using a TMPRSS3 mutant model we

demonstrate that inner ear organoids are capable of reca-

pitulating genetic-associated phenotypes observed in vivo.

Furthermore, with transgenic cell lines and scRNA-seq an-

alyses, we revealed that cell membrane-bound TMPRSS3 is

an essential component for HC homeostasis and survival.

The scRNA-seq data from D35 inner ear organoids, which

are equivalent to P12–P14 mouse inner ears, provided

insight into HC development and the cellular roles of

TMPRSS3. This study not only provides data on the

role of TMPRSS3 in inner ear HCs, but it also highlights

the utility of organoid systems as a powerful tool for un-

derstanding the genetic underpinnings of mammalian

disease.
tagged 33FLAG-TMPRSS3.
/E and R1/E-33FLAG-Tmprss3f organoids. The arrowhead indicates
l portion of 33FLAG-TMPRSS3F after autocleavage.
n D14 aggregates as indicated. White dashed lines indicate ECAD+

ining).
ining.
rowheads indicate regions of overlapping anti-FLAG and Golgi-97

CoP in ImageJ; the Van Steensel’s cross-correlation functions (CCF)
e and Mander’s coefficient values for anti-FLAG and phalloidin are



EXPERIMENTAL PROCEDURES

Mouse Specimens
The care and use of animals were approved by the Indiana Univer-

sity School of Medicine’s Institutional Animal Care and Use Com-

mittee. WT (C3HeB/FeJ; Tmprss3WT) and Tmprss3 mutant mice

(Tmprss3Y260X) were kind gifts from Dr. Michel Guipponi’s

laboratory.

Derivation of mESCs
Derivation of mESCs from Tmprss3WT and Tmprss3Y260X mice fol-

lowed the protocol of Czechanski et al. (2014). See Supplemental

Experimental Procedures for details.

Generation of the Tmprss3-KO ESC and 33FLAG-

Tagged Tmprss3 Lines
A Cas9n vector containing two guide RNAs (offset = 4 bp;

Tmprss3_g1 and _g2; Table S5) targeting the adjacent region to

the start codon of Tmprss3 was manufactured by DNA 2.0. The

donor vector was assembled from a 2A-nGFP-PGK-Puro cassette,

two�1-kb homology arms (LHA andRHA), and a pUC19 backbone

using the Gibson Assembly master mix (New England Biolabs).

The two homology arms were amplified from R1/E (ATCC SCRC-

1036) genomic DNA (Tmprss3_LHA and Tmprss3_RHA; Table S5).

The Cas9n vector and the donor vector were transfected into R1/

E mESCs following the manufacturer’s protocol (P3 Primary Cell

4D-Nucleofector X kit, Lonza). The transfection was carried out

in a 4D Nucleofector using the program CB-150. Cells then were

maintained in modified LIF-2i medium (Table S6) (Choi et al.,

2017) supplemented with 1 mM Scr7 (Xcessbio) for 48 h before pu-

romycin selection as follows: medium containing 0.5 mg/mL puro-

mycinwas changed daily for 5 days before removing the PGK-Puro

subcassette by transfecting a vector expressing Cre recombinase

(Addgene #13775). Isolation of clonal cell lines followed a pub-

lished protocol (Ran et al., 2013). Successful insertion of the 2A-

nGFP cassette was verified by PCR followed by DNA sequencing.

33FLAG-tagged Tmprss3 mESC was generated in similar proced-

ures. See Supplemental Experimental Procedures for details.

Induction of Inner Ear Organoids
Induction followed the protocol of Koehler and Hashino (2014),

but with modifications (Figure S7). In brief, ESCs were dissociated

in Accutase (STEMCELL Technologies) and resuspended in differ-

entiation medium (DMLK; Table S6). On D0, 1,500 cells in

100 mL of DMLK per well were plated in low binding 96-well

U-bottomed plates (Thermo Fisher). On D1, half of the

medium was exchanged with fresh DMLK containing Matrigel

(Corning; 2% final concentration). Bone morphogenetic protein

4 (PromoKine) and SB-431542 (Reprocell) were added onD3. Later,

basic fibroblast growth factor (STEMCELLTechnologies) and LDN-

193189 (Reprocell) were added (Figure S7). On D8, aggregates were

washed twice in PBS before being transferred to new 96-well

U-bottomed plates in 100 mL of N2 medium (Table S6) containing

1% Matrigel and 3 mM CHIR99021 (DeJonge et al., 2016). After

48 h, aggregates were transferred to 24-well low binding plates in

fresh N2 medium until D20. On D20, aggregates were cultured in

organoid medium (Table S6) with constant shaking. Half of the
mediumwas changed every other day during the long-termculture

period.

scRNA-Seq of Inner Ear Organoids
Ten to twelve organoids were dissociated in TrypLE Express

(Thermo Fisher) at 37�C with shaking for 40 min. During dissocia-

tion, samples were mixed with pipetting every 5–10 min. Dissoci-

ated cells were filtered through a 40-mm cell strainer (Flowmi)

followed by three washes with Dulbecco’s PBS + 2% BSA. Single-

cell 30 RNA-seq experiments were conducted using the Chromium

single-cell system (10x Genomics) and Illumina sequencers at the

Center for Medical Genetics of Indiana University School of

Medicine. See Supplemental Experimental Procedures for the

scRNA-seq data process.

Analysis of scRNA-Seq Data
Integrated comparative analyses of two scRNA datasets were per-

formed using Seurat 2.3 (Butler et al., 2018). In brief, Seurat objects

were set up and genes that were used in the analyses were chosen.

Canonical correlation analyses (CCA) were carried out and align-

ments of CCA subspaces were performed to generate a new dimen-

sion reduction. Clusters for the new dimension reduction of inte-

grated analyses were visualized using tSNE plots. Annotations of

clusters (Figures S5A–S5D) were determined using top cluster-

defining genes in addition to the data annotation based on mouse

RNA-seq samples using the package singleR (Aran et al., 2018).

Average gene expressions were compared between samples (WT

versus KO) within the same cluster. Scatterplots showed average

gene expression comparisons, and genes enriched in samples

were indicated.

Gene ontology analyses were performed with annotation tools,

Panther v14 (Mi et al., 2019) and STRING v11.0 (Gable et al.,

2018). Protein-protein interaction analysis was conducted using

IntAct (https://www.ebi.ac.uk/intact/). Protein-protein interac-

tions including at least three DEGs are presented in the main

text. Gene over-representation tests, which examined whether

biological processes and molecular features are enriched in the

gene list of the HC cluster between samples, were carried out in

Panther v14.

Microscopic Imaging and Statistical Analyses
See Supplemental Experimental Procedures for immunohisto-

chemistry procedures. For assessment of the concentration of

the apoptotic marker CASP3 in mouse vestibular sensory

epithelia and C3H-derived otic vesicles, fluorescence intensity

was measured (as gray values) from raw images using ImageJ soft-

ware (NIH). For each vestibular sensory epithelium, gray values

were averaged from three to four sections across the tissue. Six sen-

sory epithelia for each vestibular organ type were included in the

statistical analyses. Otic vesicles were identified based on the pres-

ence of HCs enclosed in the circular structure formed by SOX2+

cells (Figure S3). Gray values from three to five sections of one

otic vesicle were averaged, and 14–16 otic vesicles from three inde-

pendent experiments were included in statistical analyses. One-

tailed t tests were carried out between WT and Tmprss3 mutant

samples, and it was hypothesized that the latter would be charac-

terized by higher CASP3 levels; an a level of 0.05 was set a priori.
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Counting of CASP3+MYO7A+ HCs, CASP3+SOX2+MYO7A� SCs,

and BK+BRN3C+ HCs was carried out with ImageJ. Data (n R 19

otic vesicles; see details in figure legends.) were collected from at

least three different experiments. Two-tailed t tests (p < 0.05)

were used to uncover differences in CASP3+ cells between cell

types. Student’s t tests were carried out to compare the percentage

of HCs expressing BK channels relative to the total number of HCs

in otic vesicles between R1/E and Tmprss3-KO organoids. All statis-

tical analyses were conducted with GraphPad Prism7.
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