11 research outputs found

    Exploiting bacterial DNA gyrase as a drug target: current state and perspectives

    Get PDF
    DNA gyrase is a type II topoisomerase that can introduce negative supercoils into DNA at the expense of ATP hydrolysis. It is essential in all bacteria but absent from higher eukaryotes, making it an attractive target for antibacterials. The fluoroquinolones are examples of very successful gyrase-targeted drugs, but the rise in bacterial resistance to these agents means that we not only need to seek new compounds, but also new modes of inhibition of this enzyme. We review known gyrase-specific drugs and toxins and assess the prospects for developing new antibacterials targeted to this enzyme

    Mass transfer characteristics of nonaqueous phase liquid based on air-liquid interfacial area in variably saturated porous media

    No full text
    Vapor phase mass transfer is an important interphase transport process that dominates the overall transport phenomena in liquid-gas system in porous media. Volatilization of nonaqueous phase liquids (NAPLs) in porous media is such system that takes place during the remediation of volatile organic compound-contaminated soil using soil vapor extraction. Usually, interphase mass transfer coefficient is lumped together with the air-liquid interfacial area because of the inaccessibility to quantify this parameter due to the heterogeneous nature of the pore structure of the media and the morphology of the fluid distribution. In this paper, the air-liquid interfacial area is quantified using a simple method derived from pressure-saturation relationship in three glass bead media. A series of one-dimensional NAPL volatilization experiments were carried out in a horizontal column for the same porous media by using toluene as the single contaminant. Experiments were conducted for NAPL saturation range of 13.8 ~ 71 % and pore gas velocities of 0.1 ~ 2 cm/s, and lumped mass transfer coefficients were evaluated. Actual vapor phase mass transfer coefficients were calculated using corresponding air-liquid interfacial area for a specific NAPL saturation and characterized in dimensionless form for all porous media. Results revealed that the vapor phase mass transfer increases with pore gas velocities and grain sizes but decreases with NAPL saturation

    Advanced Molecular Probes for Sequence-Specific DNA Recognition

    No full text
    DNA detection can be achieved using theWatson-Crick base pairing with oligonucleotides or oligonucleotide analogs, followed by generation of a physical or chemical signal coupled with a transducer device. The nature of the probe is an essential feature which determines the performances of the sensing device. Many synthetic processes are presently available for “molecular engineering” of DNA probes, enabling label-free and PCR-free detection to be performed. Furthermore, many DNA analogs with improved performances are available and are under development; locked nucleic acids (LNA), peptide nucleic acids (PNA) and their analogs, morpholino oligonucleotides (MO) and other modified probes have shown improved properties of affinity and selectivity in target recognition compared to those of simple DNA probes. The performances of these probes in sensing devices, and the requirements for detection of unamplified DNA will be discussed in this chapter. Chemistry and architectures for conjugation of probes to reporter units, surfaces and nanostructures will also be discussed. Examples of probes used in ultrasensitive detection of unamplified DNA are listed

    Advanced Molecular Probes for Sequence-Specific DNA Recognition

    No full text

    Joint Analysis of BICEP2/Keck Array and Planck Data

    Get PDF
    We report the results of a joint analysis of data from BICEP2/Keck Array and Planck. BICEP2 and Keck Array have observed the same approximately 400 deg2 patch of sky centered on RA 0 h, Dec. -57.5 \ub0 . The combined maps reach a depth of 57 nK deg in Stokes Q and U in a band centered at 150 GHz. Planck has observed the full sky in polarization at seven frequencies from 30 to 353 GHz, but much less deeply in any given region (1.2 \u3bc K deg in Q and U at 143 GHz). We detect 150 7353 cross-correlation in B modes at high significance. We fit the single- and cross-frequency power spectra at frequencies 65150 GHz to a lensed-\u39b CDM model that includes dust and a possible contribution from inflationary gravitational waves (as parametrized by the tensor-to-scalar ratio r), using a prior on the frequency spectral behavior of polarized dust emission from previous Planck analysis of other regions of the sky. We find strong evidence for dust and no statistically significant evidence for tensor modes. We probe various model variations and extensions, including adding a synchrotron component in combination with lower frequency data, and find that these make little difference to the r constraint. Finally, we present an alternative analysis which is similar to a map-based cleaning of the dust contribution, and show that this gives similar constraints. The final result is expressed as a likelihood curve for r, and yields an upper limit r0.05<0.12 at 95% confidence. Marginalizing over dust and r, lensing B modes are detected at 7.0 \u3c3 significance
    corecore