36 research outputs found

    Ultrasound-guided percutaneous delivery of tissue-engineered endothelial cells to the adventitia of stented arteries controls the response to vascular injury in a porcine model

    Get PDF
    Objective High restenosis rates are a limitation of peripheral vascular interventions. Previous studies have shown that surgical implantation of a tissue-engineered endothelium onto the adventitia surface of injured vessels regulates vascular repair. In the present study, we developed a particulate formulation of tissue-engineered endothelium and a method to deliver the formulation perivascular to injured blood vessels using a percutaneous, minimally invasive technique. Methods Stainless steel stents were implanted in 18 balloon-injured femoral arteries of nine domestic swine, followed by ultrasound-guided percutaneous perivascular injection of gelatin particles containing cultured allogeneic porcine aortic endothelial cells (PAE). Controls received injections of empty particles (matrix) or no perivascular injection (sham) after stent deployment. Animals were sacrificed after 90 days. Results Angiographic analysis revealed a significantly greater lumen diameter in the stented segments of arteries treated with PAE/matrix (4.72 ± 0.12 mm) compared with matrix (4.01 ± 0.20 mm) or sham (4.03 ± 0.16 mm) controls (P < .05). Similarly, histologic analysis revealed that PAE/matrix-treated arteries had the greatest lumen area (20.4 ± 0.7 mm[superscript 2]; P < .05) compared with controls (16.1 ± 0.9 mm[superscript 2] and 17.1 ± 1.0 mm[superscript 2] for sham and matrix controls, respectively) and the smallest intimal area (3.3 ± 0.4 mm[superscript 2]; P < .05) compared with controls (6.2 ± 0.5 mm[superscript 2] and 4.4 ± 0.5 mm[superscript 2] for sham and matrix controls, respectively). Overall, PAE-treated arteries had a 33% to 50% decrease in percent occlusion (P < .05) compared with controls. Histopathological analysis revealed fewer leukocytes present in the intima in the PAE/matrix group compared with control groups, suggesting that the biological effects were in part due to inhibition of the inflammatory phase of the vascular response to injury. Conclusions Minimally invasive, perivascular delivery of PAE/matrix to stented arteries was performed safely using ultrasound-guided percutaneous injections and significantly decreased stenosis. Application at the time of or subsequent to peripheral interventions may decrease clinical restenosis rates

    CogState computerized memory tests in patients with brain metastases: Secondary endpoint results of NRG oncology RTOG 0933

    Get PDF
    Whole brain radiotherapy (WBRT) is associated with memory dysfunction. As part of NRG Oncology RTOG 0933, a phase II study of WBRT for brain metastases that conformally avoided the hippocampal stem cell compartment (HA-WBRT), memory was assessed pre-and post-HA-WBRT using both traditional and computerized memory tests. We examined whether the computerized tests yielded similar findings and might serve as possible alternatives for assessment of memory in multi-institution clinical trials. Adult patients with brain metastases received HA-WBRT to 30 Gy in ten fractions and completed Hopkins Verbal Learning Test-Revised (HVLT-R), CogState International Shopping List Test (ISLT) and One Card Learning Test (OCLT), at baseline, 2 and 4 months. Tests’ completion rates were 52–53% at 2 months and 34–42% at 4 months. All baseline correlations between HVLT-R and CogState tests were significant (p B 0.003). At baseline, both CogState tests and one component of HVLT-R differentiated those who were alive at 6 months and those who had died (p B 0.01). At 4 months, mean relative decline was 7.0% for HVLT-R Delayed Recall and 18.0% for ISLT Delayed Recall. OCLT showed an 8.0% increase. A reliable change index found no significant changes from baseline to 2 and 4 months for ISLT Delayed Recall (z =-0.40, p = 0.34; z =-0.68, p = 0.25) or OCLT (z = 0.15, p = 0.56; z = 0.41, p = 0.66). Study findings support the possibility that hippocampal avoidance may be associated with preservation of memory test performance, and that these computerized tests also may be useful and valid memory assessments in multi-institution adult brain tumor trials

    Delivery Site of Perivascular Endothelial Cell Matrices Determines Control of Stenosis in a Porcine Femoral Stent Model

    Get PDF
    PURPOSE: High restenosis rates are a major limitation of peripheral interventions. Endothelial cells, grown within gelatin matrices and implanted onto the adventitia of injured vessels, inhibit stenosis in experimental models. To determine if this technology could be adapted for minimally invasive procedures, we compared the effects of cells in an implantable sponge to an injectable formulation and investigated the importance of delivery site in a stent model. MATERIALS AND METHODS: Stents were implanted in the femoral arteries of 30 pigs followed by perivascular implantation of sponges or injection of particles containing allogeneic endothelial cells. Controls received acellular matrices or nothing. The effects of delivery site were assessed by injecting cellular matrices into or adjacent to the perivascular tissue, or into the neighboring muscle. Animals were sacrificed after 28 days. Pre-sacrifice angiograms and tissue sections were evaluated for stenosis. RESULTS: Arteries treated with cellular matrices had a 55 – 63% decrease in angiographic stenosis (P<0.05) and a 38 – 43% reduction (P<0.05) in histologic stenoses compared to controls. Intimal area was greatest when cellular matrices were delivered into the muscle (6.35 ± 0.95 mm2) compared to into or adjacent to the perivascular tissue (4.05 ± 0.56 mm2 and 4.73 ± 0.53 mm2, respectively, P < 0.05). CONCLUSIONS: Perivascular endothelial-cell matrices reduced stenosis after stent-induced injury. The effects were not dependent on the formulation but appeared to be dependent upon delivery site. Minimally invasive injections of endothelial-cell matrices to the adventitia of arteries following peripheral interventions may decrease restenosis rates.National Institutes of Health (U.S.) (Grant GM 49039

    Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers

    Get PDF
    We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 20h10m54.71s+33°33′25.29′′, and the other (B) is 7.45° in diameter and centered on 8h35m20.61s-46°49′25.151′′. We explored the frequency range of 50-1500 Hz and frequency derivative from 0 to -5×10-9 Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h0 of 6.3×10-25, while at the high end of our frequency range we achieve a worst-case upper limit of 3.4×10-24 for all polarizations and sky locations. © 2016 American Physical Society

    Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors

    Get PDF
    Searches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a colocated detector pair is more sensitive to a gravitational-wave background than a noncolocated detector pair. However, colocated detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of colocated detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGO’s fifth science run. At low frequencies, 40–460 Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitational-wave signal. However, at high frequencies, 460–1000 Hz, these techniques are sufficient to set a 95% confidence level upper limit on the gravitational-wave energy density of Ω(f) < 7.7 × 10[superscript -4](f/900  Hz)[superscript 3], which improves on the previous upper limit by a factor of ~180. In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors.National Science Foundation (U.S.)United States. National Aeronautics and Space AdministrationCarnegie TrustDavid & Lucile Packard FoundationAlfred P. Sloan Foundatio

    Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers

    Get PDF
    We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 20[superscript h]10[superscript m]54.71[superscript s] + 33°33[superscript ′]25.29[superscript ′′], and the other (B) is 7.45° in diameter and centered on 8[superscript h]35[superscript m]20.61[superscript s] - 46°49[superscript ′]25.151[superscript ′′]. We explored the frequency range of 50–1500 Hz and frequency derivative from 0 to -5 × 10[superscript -9]  Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h[subscript 0] of 6.3 × 10[superscript -25], while at the high end of our frequency range we achieve a worst-case upper limit of 3.4 × 10[superscript -24] for all polarizations and sky locations.National Science Foundation (U.S.)United States. National Aeronautics and Space AdministrationCarnegie TrustDavid & Lucile Packard FoundationAlfred P. Sloan Foundatio

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10–500 s in a frequency band of 40–1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10[superscript -5] and 9.4×10[superscript -4]  Mpc[superscript -3] yr[superscript -1] at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves.Carnegie TrustDavid & Lucile Packard FoundationAlfred P. Sloan FoundationNational Science Foundation (U.S.

    First low frequency all-sky search for continuous gravitational wave signals

    Get PDF
    In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 and 128 Hz with a range of spin-down between −1.0×10−10 and +1.5×10−11  Hz/s, and was based on a hierarchical approach. The starting point was a set of short fast Fourier transforms, of length 8192 s, built from the calibrated strain data. Aggressive data cleaning, in both the time and frequency domains, has been done in order to remove, as much as possible, the effect of disturbances of instrumental origin. On each data set a number of candidates has been selected, using the FrequencyHough transform in an incoherent step. Only coincident candidates among VSR2 and VSR4 have been examined in order to strongly reduce the false alarm probability, and the most significant candidates have been selected. The criteria we have used for candidate selection and for the coincidence step greatly reduce the harmful effect of large instrumental artifacts. Selected candidates have been subject to a follow-up by constructing a new set of longer fast Fourier transforms followed by a further incoherent analysis, still based on the FrequencyHough transform. No evidence for continuous gravitational wave signals was found, and therefore we have set a population-based joint VSR2-VSR4 90% confidence level upper limit on the dimensionless gravitational wave strain in the frequency range between 20 and 128 Hz. This is the first all-sky search for continuous gravitational waves conducted, on data of ground-based interferometric detectors, at frequencies below 50 Hz. We set upper limits in the range between about 10−24 and 2×10−23 at most frequencies. Our upper limits on signal strain show an improvement of up to a factor of ∼2 with respect to the results of previous all-sky searches at frequencies below 80 H

    Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers

    Get PDF
    We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 20[superscript h]10[superscript m]54.71[superscript s] + 33°33[superscript ′]25.29[superscript ′′], and the other (B) is 7.45° in diameter and centered on 8[superscript h]35[superscript m]20.61[superscript s] - 46°49[superscript ′]25.151[superscript ′′]. We explored the frequency range of 50–1500 Hz and frequency derivative from 0 to -5 × 10[superscript -9]  Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h[subscript 0] of 6.3 × 10[superscript -25], while at the high end of our frequency range we achieve a worst-case upper limit of 3.4 × 10[superscript -24] for all polarizations and sky locations.National Science Foundation (U.S.)United States. National Aeronautics and Space AdministrationCarnegie TrustDavid & Lucile Packard FoundationAlfred P. Sloan Foundatio

    First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data

    Get PDF
    We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population, corresponding to a sensitivity depth of 48.7 [1/root Hz]. At the frequency of best strain sensitivity, near 100 Hz, we set 90% confidence upper limits of 1.8 x 10(-25). At the low end of our frequency range, 20 Hz, we achieve upper limits of 3.9 x 10(-24). At 55 Hz we can exclude sources with ellipticities greater than 10(-5) within 100 pc of Earth with fiducial value of the principal moment of inertia of 10(38) kg m(2)
    corecore