1,204 research outputs found

    Antimony-doped graphene nanoplatelets

    Get PDF
    Heteroatom doping into the graphitic frameworks have been intensively studied for the development of metal-free electrocatalysts. However, the choice of heteroatoms is limited to non-metallic elements and heteroatom-doped graphitic materials do not satisfy commercial demands in terms of cost and stability. Here we realize doping semimetal antimony (Sb) at the edges of graphene nanoplatelets (GnPs) via a simple mechanochemical reaction between pristine graphite and solid Sb. The covalent bonding of the metalloid Sb with the graphitic carbon is visualized using atomic-resolution transmission electron microscopy. The Sb-doped GnPs display zero loss of electrocatalytic activity for oxygen reduction reaction even after 100,000 cycles. Density functional theory calculations indicate that the multiple oxidation states (Sb3+ and Sb5+) of Sb are responsible for the unusual electrochemical stability. Sb-doped GnPs may provide new insights and practical methods for designing stable carbon-based electrocatalystsclose0

    Classification of non-Riemannian doubled-yet-gauged spacetime

    Get PDF
    Assuming O(D,D)\mathbf{O}(D,D) covariant fields as the `fundamental' variables, Double Field Theory can accommodate novel geometries where a Riemannian metric cannot be defined, even locally. Here we present a complete classification of such non-Riemannian spacetimes in terms of two non-negative integers, (n,nˉ)(n,\bar{n}), 0n+nˉD0\leq n+\bar{n}\leq D. Upon these backgrounds, strings become chiral and anti-chiral over nn and nˉ\bar{n} directions respectively, while particles and strings are frozen over the n+nˉn+\bar{n} directions. In particular, we identify (0,0)(0,0) as Riemannian manifolds, (1,0)(1,0) as non-relativistic spacetime, (1,1)(1,1) as Gomis-Ooguri non-relativistic string, (D1,0)(D{-1},0) as ultra-relativistic Carroll geometry, and (D,0)(D,0) as Siegel's chiral string. Combined with a covariant Kaluza-Klein ansatz which we further spell, (0,1)(0,1) leads to Newton-Cartan gravity. Alternative to the conventional string compactifications on small manifolds, non-Riemannian spacetime such as D=10D=10, (3,3)(3,3) may open a new scheme of the dimensional reduction from ten to four.Comment: 1+41 pages; v2) Refs added; v3) Published version; v4) Sign error in (2.51) correcte

    Double Field Theory Formulation of Heterotic Strings

    Full text link
    We extend the recently constructed double field theory formulation of the low-energy theory of the closed bosonic string to the heterotic string. The action can be written in terms of a generalized metric that is a covariant tensor under O(D,D+n), where n denotes the number of gauge vectors, and n additional coordinates are introduced together with a covariant constraint that locally removes these new coordinates. For the abelian subsector, the action takes the same structural form as for the bosonic string, but based on the enlarged generalized metric, thereby featuring a global O(D,D+n) symmetry. After turning on non-abelian gauge couplings, this global symmetry is broken, but the action can still be written in a fully O(D,D+n) covariant fashion, in analogy to similar constructions in gauged supergravities.Comment: 28 pages, v2: minor changes, version published in JHE

    Vaccination with Klebsiella pneumoniae-derived extracellular vesicles protects against bacteria-induced lethality via both humoral and cellular immunity

    Get PDF
    The emergence of multidrug-resistant Klebsiella pneumoniae highlights the need to develop preventive measures to ameliorate Klebsiella infections. Bacteria-derived extracellular vesicles (EVs) are spherical nanometer-sized proteolipids enriched with outer membrane proteins. Gram-negative bacteria-derived EVs have gained interest for use as nonliving complex vaccines. In the present study, we evaluated whether K. pneumoniae-derived EVs confer protection against bacteria-induced lethality. K. pneumoniae-derived EVs isolated from in vitro bacterial culture supernatants induced innate immunity, including the upregulation of co-stimulatory molecule expression and proinflammatory mediator production. EV vaccination via the intraperitoneal route elicited EV-reactive antibodies and interferon-gamma-producing T-cell responses. Three vaccinations with the EVs prevented bacteria-induced lethality. As verified by sera and splenocytes adoptive transfer, the protective effect of EV vaccination was dependent on both humoral and cellular immunity. Taken together, these findings suggest that K. pneumoniae-derived EVs are a novel vaccine candidate against K. pneumoniae infections.open111613sciescopuskc

    Structure of the ArgRS-GlnRS-AIMP1 complex and its implications for mammalian translation

    Get PDF
    In higher eukaryotes, one of the two arginyl-tRNA synthetases (ArgRSs) has evolved to have an extended N-terminal domain that plays a crucial role in protein synthesis and cell growth and in integration into the multisynthetase complex (MSC). Here, we report a crystal structure of the MSC subcomplex comprising ArgRS, glutaminyl-tRNA synthetase (GlnRS), and the auxiliary factor aminoacyl tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1)/p43. In this complex, the N-terminal domain of ArgRS forms a long coiled-coil structure with the N-terminal helix of AIMP1 and anchors the C-terminal core of GlnRS, thereby playing a central role in assembly of the three components. Mutation of AIMP1 destabilized the N-terminal helix of ArgRS and abrogated its catalytic activity. Mutation of the N-terminal helix of ArgRS liberated GlnRS, which is known to control cell death. This ternary complex was further anchored to AIMP2/p38 through interaction with AIMP1. These findings demonstrate the importance of interactions between the N-terminal domains of ArgRS and AIMP1 for the catalytic and noncatalytic activities of ArgRS and for the assembly of the higher-order MSC protein complex.open111315Ysciescopu

    Edge-Functionalization of Pyrene as a Miniature Graphene via Friedel–Crafts Acylation Reaction in Poly(Phosphoric Acid)

    Get PDF
    The feasibility of edge-functionalization of graphite was tested via the model reaction between pyrene and 4-(2,4,6-trimethylphenyloxy)benzamide (TMPBA) in poly(phosphoric acid) (PPA)/phosphorous pentoxide (P2O5) medium. The functionalization was confirmed by various characterization techniques. On the basis of the model study, the reaction condition could be extended to the edge-functionalization of graphite with TMPBA. Preliminary results showed that the resultant TMPBA-grafted graphite (graphite-g-TMPBA) was found to be readily dispersible in N-methyl-2-pyrrolidone (NMP) and can be used as a precursor for edge-functionalized graphene (EFG)

    The effect Akt2 deletion on tumor development in Pten+/− mice

    Get PDF
    The serine/threonine kinase Akt is frequently activated in human cancers and is considered an attractive therapeutic target. However, the relative contributions of the different Akt isoforms to tumorigenesis, and the effect of their deficiencies on cancer development are not well understood. We had previously shown that Akt1 deficiency is sufficient to markedly reduce the incidence of tumors in Pten+/− mice. Particularly, Akt1 deficiency inhibits endometrial carcinoma and prostate neoplasia in Pten+/− mice. Here, we analyzed the effect of Akt2 deficiency on the incidence of tumors in Pten+/− mice. Relative to Akt1, Akt2 deficiency had little-to-no effect on the incidence of prostate neoplasia, endometrial carcinoma, intestinal polyps and adrenal lesions in Pten+/− mice. However, Akt2 deficiency significantly decreased the incidence of thyroid tumors in Pten+/−, which correlates with the relatively high level of Akt2 expression in the thyroid. Thus, unlike Akt1 deletion, Akt2 deletion is not sufficient to markedly inhibit tumorigenesis in Pten+/− mice in most tested tissues. The relatively small effect of Akt2 deletion on the inhibition of tumorigenesis in Pten+/− mice could be explained, in part, by an insufficient decrease in total Akt activity, due to the relatively lower Akt2 versus Akt1 expression, and relatively high blood insulin levels in Pten+/−Akt2−/− mice. The relatively high blood insulin levels in Pten+/−Akt2−/− mice may elevate the activity of Akt1, and possibly Akt3, thus, limiting the reduction of total Akt activity and preventing this activity from dropping to a threshold level required to inhibit tumorigenesis

    Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron

    Get PDF
    We study the underlying event in proton-antiproton collisions by examining the behavior of charged particles (transverse momentum pT > 0.5 GeV/c, pseudorapidity |\eta| < 1) produced in association with large transverse momentum jets (~2.2 fb-1) or with Drell-Yan lepton-pairs (~2.7 fb-1) in the Z-boson mass region (70 < M(pair) < 110 GeV/c2) as measured by CDF at 1.96 TeV center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan production) or the leading jet (in high-pT jet production) in each event to define three regions of \eta-\phi space; toward, away, and transverse, where \phi is the azimuthal scattering angle. For Drell-Yan production (excluding the leptons) both the toward and transverse regions are very sensitive to the underlying event. In high-pT jet production the transverse region is very sensitive to the underlying event and is separated into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The data are corrected to the particle level to remove detector effects and are then compared with several QCD Monte-Carlo models. The goal of this analysis is to provide data that can be used to test and improve the QCD Monte-Carlo models of the underlying event that are used to simulate hadron-hadron collisions.Comment: Submitted to Phys.Rev.

    Precision measurement of the top quark mass from dilepton events at CDF II

    Get PDF
    We report a measurement of the top quark mass, M_t, in the dilepton decay channel of ttˉb+νbˉνˉt\bar{t}\to b\ell'^{+}\nu_{\ell'}\bar{b}\ell^{-}\bar{\nu}_{\ell} using an integrated luminosity of 1.0 fb^{-1} of p\bar{p} collisions collected with the CDF II detector. We apply a method that convolutes a leading-order matrix element with detector resolution functions to form event-by-event likelihoods; we have enhanced the leading-order description to describe the effects of initial-state radiation. The joint likelihood is the product of the likelihoods from 78 candidate events in this sample, which yields a measurement of M_{t} = 164.5 \pm 3.9(\textrm{stat.}) \pm 3.9(\textrm{syst.}) \mathrm{GeV}/c^2, the most precise measurement of M_t in the dilepton channel.Comment: 7 pages, 2 figures, version includes changes made prior to publication by journa
    corecore