1,133 research outputs found

    The Winning Narrative: The Social Genesis of Pilgrimage Sites

    Get PDF
    While pilgrimage sites may be sparked by historical events, their meaning is created by their accompanying narratives. A pilgrimage site becomes sacred to visitors not merely because of scripture, or supposed religious facts, but also because of social and psychological contexts. It is their winning narrative that supplies meaning and a framework for understanding. Without such narratives, it is conceivable that some pilgrimage sites would not have gained their enduring popularity and international appeal. This article not only describes a few instances of such sites rising to fame, but also the philosophy behind a winning narrative. The idea that narrative can construct the Identity of a place is based on the notion that a story can supply meaning by unifying discrete, and otherwise disjointed events, into a coherent account (McAdams, 2013). While the concept of narrative identity is most often associated with personal psychology (Hammack, 2011; Nussbaum, 1990), the authors of this paper find analogies between the function of narrative in personal psychology, and in pilgrimage. These analogies are applied to pilgrimage to illustrate how narratives function at pilgrimage sites to unite events with historical, religious, personal, cultural and political contexts. A pilgrimage narrative forms the framework for how people and institutions understand their roles and motivations, and thus how they will act, respond, and experience things. The authors identify five features that make some narratives more successful than others, claiming that ‘winning narratives’ are so powerful that a sacred site or shrine’s establishment and development could not have done without it, or at least, would not have enjoyed the rate of success in visitor numbers in comparison to similar sites that lacked a winning narrative and enjoyed therefore less popularity and visitors. The five features of a winning narrative are here illustrated with examples

    Line Broadening and Decoherence of Electron Spins in Phosphorus-Doped Silicon Due to Environmental 29^Si Nuclear Spins

    Full text link
    Phosphorus-doped silicon single crystals with 0.19 % <= f <= 99.2 %, where f is the concentration of 29^Si isotopes, are measured at 8 K using a pulsed electron spin resonance technique, thereby the effect of environmental 29^Si nuclear spins on the donor electron spin is systematically studied. The linewidth as a function of f shows a good agreement with theoretical analysis. We also report the phase memory time T_M of the donor electron spin dependent on both f and the crystal axis relative to the external magnetic field.Comment: 5 pages, 4 figure

    Housekeeping genes for quantitative expression studies in the three-spined stickleback Gasterosteus aculeatus

    Get PDF
    Background During the last years the quantification of immune response under immunological challenges, e.g. parasitation, has been a major focus of research. In this context, the expression of immune response genes in teleost fish has been surveyed for scientific and commercial purposes. Despite the fact that it was shown in teleostei and other taxa that the gene for beta-actin is not the most stably expressed housekeeping gene (HKG), depending on the tissue and experimental treatment, the gene has been us Results To establish a reliable method for the measurement of immune gene expression in Gasterosteus aculeatus, sequences from the now available genome database and an EST library of the same species were used to select oligonucleotide primers for HKG, in order to perform quantitative reverse-transcription (RT) PCR. The expression stability of ten candidate reference genes was evaluated in three different tissues, and in five parasite treatment groups, using the three algorithms BestKeeper, geNorm and N Conclusion As they were the most stably expressed genes in all tissues examined, we suggest using the genes for the L13a ribosomal binding protein and ubiquitin as alternative or additional reference genes in expression analysis in Gasterosteus aculeatus.

    GHOST - safe-guarding home IoT environments with personalised real-time risk control

    Get PDF
    We present the European research project GHOST, (Safe-guarding home IoT environments with personalised real-time risk control), which challenges the traditional cyber security solutions for the IoT by proposing a novel reference architecture that is embedded in an adequately adapted smart home network gateway, and designed to be vendor-independent. GHOST proposes to lead a paradigm shift in consumer cyber security by coupling usable security with transparency and behavioural engineering

    Magnetorelaxometry Assisting Biomedical Applications of Magnetic Nanoparticles

    Get PDF
    Due to their biocompatibility and small size, iron oxide magnetic nanoparticles (MNP) can be guided to virtually every biological environment. MNP are susceptible to external magnetic fields and can thus be used for transport of drugs and genes, for heat generation in magnetic hyperthermia or for contrast enhancement in magnetic resonance imaging of biological tissue. At the same time, their magnetic properties allow one to develop sensitive and specific measurement methods to non-invasively detect MNP, to quantify MNP distribution in tissue and to determine their binding state. In this article, we review the application of magnetorelaxometry (MRX) for MNP detection. The underlying physical properties of MNP responsible for the generation of the MRX signal with its characteristic parameters of relaxation amplitude and relaxation time are described. Existing single and multi-channel MRX devices are reviewed. Finally, we thoroughly describe some applications of MRX to cellular MNP quantification, MNP organ distribution and MNP-based binding assays. Providing specific MNP signals, a detection limit down to a few nanogram MNP, in-vivo capability in conscious animals and measurement times of a few seconds, MRX is a valuable tool to improve the application of MNP for diagnostic and therapeutic purposes

    Extra cardiac findings by 64-multidetector computed tomography in patients with symptomatic atrial fibrillation prior to pulmonal vein isolation

    Get PDF
    The aim of this study was to investigate the prevalence of extracardiac findings diagnosed by 64-multidetector computed tomography (MDCT) examinations prior to circumferential pulmonary vein (PV) ablation of atrial fibrillation (AF). A total of 158 patients (median age, 60.5 years; male 68%) underwent 64-MDCT of the chest and upper abdomen to characterize left atrial and PV anatomy prior to AF ablation. MDCT images were evaluated by a thoracic radiologist and a cardiologist. For additional scan interpretation, bone, lung, and soft tissue window settings were used. CT scans with extra-cardiac abnormalities categorized for the anatomic distribution and divided into two groups: Group 1—exhibiting clinically significant or potentially significant findings, and Group 2—patients with clinically non-significant findings. Extracardiac findings (n = 198) were observed in 113/158 (72%) patients. At least one significant finding was noted in 49/158 patients (31%). Group 1 abnormalities, such as malignancies or pneumonias, were found in 85/198 findings (43%). Group 2 findings, for example mild degenerative spine disease or pleural thickening, were observed in 113/198 findings (72%). 74/198 Extracardiac findings were located in the lung (37%), 35/198 in the mediastinum (18%), 8/198 into the liver (4%) and 81/198 were in other organs (41). There is an appreciable prevalence of prior undiagnosed extracardiac findings detected in patients with AF prior to PV-Isolation by MDCT. Clinically significant or potentially significant findings can be expected in ~40% of patients who undergo cardiac MDCT. Interdisciplinary trained personnel is required to identify and interpret both cardiac and extra cardiac findings

    Unrequested Findings on Cardiac Computed Tomography: Looking Beyond the Heart

    Get PDF
    Objectives: To determine the prevalence of clinically relevant unrequested extra-cardiac imaging findings on cardiac Computed Tomography (CT) and explanatory factors thereof. Methods: A systematic review of studies drawn from online electronic databases followed by meta-analysis with metaregression was performed. The prevalence of clinically relevant unrequested findings and potentially explanatory variables were extracted (proportion of smokers, mean age of patients, use of full FOV, proportion of men, years since publication). Results: Nineteen radiological studies comprising 12922 patients met the inclusion criteria. The pooled prevalence of clinically relevant unrequested findings was 13 % (95 % confidence interval 9–18, range: 3–39%). The large differences in prevalence observed were not explained by the predefined (potentially explanatory) variables. Conclusions: Clinically relevant extra-cardiac findings are common in patients undergoing routine cardiac CT, and their prevalence differs substantially between studies. These differences may be due to unreported factors such as different definitions of clinical relevance and differences between populations. We present suggestions for basic reporting whic

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore